...
首页> 外文期刊>ACM Transactions on Graphics >Constructing Intrinsic Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams
【24h】

Constructing Intrinsic Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams

机译:从测地Voronoi图对偶构造本征Delaunay三角剖分

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Intrinsic Delaunay triangulation (IDT) naturally generalizes Delaunay trian-gulation from R~2 to curved surfaces. Due to many favorable properties, the IDT whose vertex set includes all mesh vertices is of particular interest in polygonal mesh processing. To date, the only way for constructing such IDT is the edge-flipping algorithm, which iteratively flips non-Delaunay edges to become locally Delaunay. Although this algorithm is conceptually simple and guarantees to terminate in finite steps, it has no known time complexity and may also produce triangulations containing faces with only two edges. This article develops a new method to obtain proper IDTs on manifold triangle meshes. We first compute a geodesic Voronoi diagram (GVD) by taking all mesh vertices as generators and then find its dual graph. The sufficient condition for the dual graph to be a proper triangulation is that all Voronoi cells satisfy the so-called closed ball property. To guarantee the closed ball property everywhere, a certain sampling criterion is required. For Voronoi cells that violate the closed ball property, we fix them by computing topologi-cally safe regions, in which auxiliary sites can be added without changing the topology of the Voronoi diagram beyond them. Given a mesh with n vertices, we prove that by adding at most O(n) auxiliary sites, the computed GVD satisfies the closed ball property, and hence its dual graph is a proper IDT. Our method has a theoretical worst-case time complexity O(n~2 + tn logn), where t is the number of obtuse angles in the mesh. Computational results show that it empirically runs in linear time on real-world models.
机译:固有的Delaunay三角剖分(IDT)自然地将Delaunay三角剖分从R〜2推广到曲面。由于具有许多有利的特性,其顶点集包括所有网格顶点的IDT在多边形网格处理中特别受关注。迄今为止,构造这种IDT的唯一方法是边缘翻转算法,该算法迭代地翻转非Deelaunay边缘以变为局部Delaunay。尽管此算法从概念上讲很简单,并且可以保证以有限的步长终止,但是它没有已知的时间复杂度,并且可能还会生成仅包含两个边缘的面的三角剖分。本文开发了一种新的方法来在流形三角形网格上获得适当的IDT。我们首先通过将所有网格顶点作为生成器来计算测地Voronoi图(GVD),然后找到其对偶图。对偶图成为适当的三角剖分的充分条件是所有Voronoi单元都满足所谓的闭合球性质。为了在任何地方保证封闭球的特性,需要一定的采样标准。对于违反封闭球属性的Voronoi细胞,我们通过计算拓扑安全区域来修复它们,在其中可以添加辅助位点,而无需更改其上方Voronoi图的拓扑。给定具有n个顶点的网格,我们证明通过添加最多O(n)个辅助位点,计算出的GVD满足闭合球属性,因此其对偶图是合适的IDT。我们的方法具有理论上最坏情况下的时间复杂度O(n〜2 + tn logn),其中t是网格中的钝角数。计算结果表明,它在实际模型中以经验方式线性运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号