首页> 外文期刊>ACM SIGIR FORUM >Fast Matrix Factorization for Online Recommendationrnwith Implicit Feedback
【24h】

Fast Matrix Factorization for Online Recommendationrnwith Implicit Feedback

机译:具有隐式反馈的在线推荐的快速矩阵分解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper contributes improvements on both the eu000bectivenessrnand eu000eciency of Matrix Factorization (MF) methodsrnfor implicit feedback. We highlight two critical issues of existingrnworks. First, due to the large space of unobservedrnfeedback, most existing works resort to assign a uniformrnweight to the missing data to reduce computational complexity.rnHowever, such a uniform assumption is invalid inrnreal-world settings. Second, most methods are also designedrnin an ou000fine setting and fail to keep up with the dynamicrnnature of online data.rnWe address the above two issues in learning MF modelsrnfrom implicit feedback. We frst propose to weight the missingrndata based on item popularity, which is more eu000bectivernand rexible than the uniform-weight assumption. However,rnsuch a non-uniform weighting poses eu000eciency challenge inrnlearning the model. To address this, we specifcally designrna new learning algorithm based on the element-wisernAlternating Least Squares (eALS) technique, for eu000ecientlyrnoptimizing aMF model with variably-weighted missing data.rnWe exploit this eu000eciency to then seamlessly devise an incrementalrnupdate strategy that instantly refreshes a MF modelrngiven new feedback. Through comprehensive experimentsrnon two public datasets in both ou000fine and online protocols,rnwe show that our eALS method consistently outperformsrnstate-of-the-art implicit MF methods.
机译:本文对隐式反馈的矩阵分解(MF)方法的同等效率和同等效率做出了贡献。我们重点介绍了现有作品的两个关键问题。首先,由于无法观察到的反馈空间很大,因此大多数现有作品都对丢失的数据分配了统一的权重以降低计算复杂度。然而,这种统一的假设是无效的现实世界设置。其次,大多数方法也都在非常精细的环境下设计,无法跟上在线数据的动态性。我们在从隐式反馈中学习MF模型时,解决了上述两个问题。我们首先建议根据商品的受欢迎程度对缺失的数据进行加权,比统一加权的假设更具可操作性和可重复性。然而,这种不均匀的加权对学习模型提出了挑战。为了解决这个问题,我们专门设计了一种基于元素明智的最小二乘(eALS)技术的新学习算法,以便对具有可变加权丢失数据的aMF模型进行有效的优化。提供了新的反馈意见。通过全面的实验,无论是在ou000fine还是在线协议中,两个公共数据集都表明,我们的eALS方法始终优于最新的隐式MF方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号