首页> 外文期刊>Accounts of Chemical Research >Bioinspired Super-antiwetting Interfaces with Special Liquid−Solid Adhesion
【24h】

Bioinspired Super-antiwetting Interfaces with Special Liquid−Solid Adhesion

机译:具有特殊液体固着力的生物启发性超抗湿界面

获取原文
获取原文并翻译 | 示例
       

摘要

Snuper-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic inter-nfaces in water, with special liquid solid adhesion have recently attracted worldwide attention. Through tuning surfacenmicrostructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid solidnadhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of thesenbioinspired super-antiwetting interfaces with special liquid solid adhesion.nLow-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro-nand nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridg-ning several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted researchnattention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimeticnapproaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko’s foot, we designed struc-ntures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by thenvolume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we con-nstructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in theirnnanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale.nFurthermore, we can tune the liquid solid adhesion on the same superhydrophobic surface by dynamically controlling thenorientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega)nshow directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rollingnin the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, wendeveloped materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for waterndroplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields.nIn addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces withnspecial adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in thenmicro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings willnoffer innovative insights into the design of novel antibioadhesion materials.
机译:Snuper-抗湿界面,例如空气中的超疏水和超两亲性表面以及水中的超疏油性界面,具有特殊的液体固体附着力,最近引起了全世界的关注。通过调节表面微结构和组成以实现某些固/液接触模式,我们可以在超抗湿状态下有效地控制液体固着力。在此报告中,我们回顾了在设计和制造上具有特殊液体固体附着力的senbio启发式超抗湿界面的最新进展。低附着力超疏水性表面受到生物学启发,通常是由荷叶产生的。在微米级和纳米级研究的润湿性表明,荷叶表面的低粘附力源于复合接触模式,即在多个层次结构中桥接多个接触的微滴。最近,高粘附力的超疏水表面也引起了人们的关注。这些表面的灵感来自壁虎脚和玫瑰花瓣的表面。因此,我们提出了两种仿生方法来制造高粘附力的超疏水表面。首先,为了模仿壁虎的脚,我们设计了具有纳米级孔隙的结构,这些孔隙可以捕获与大气隔绝的空气。在这种情况下,当液滴从表面拉开时,密封空气的体积变化引起的负压会产生正常的粘附力。其次,我们用与玫瑰花瓣相似的尺寸和形貌构造了微结构。所得材料在其纳米级褶皱中保留气隙,从而在微米级的Wenzel状态下控制了超疏水性.n此外,我们可以通过动态控制微观结构的取向而不改变表面组成来调整在同一超疏水性表面上的液体固体附着力。黄油(Morpho aega)n的超疏水机翼表现出方向性粘附力:液滴很容易沿一个方向从机翼表面滚落,但被钉牢固定在相反的方向上。通过协调刺激响应材料和适当的表面几何结构,人们开发出了在超疏水性表面上的水滴的低粘性滚动状态和高粘性钉扎状态之间具有可逆转变的材料,这些材料受温度,磁场和电场的控制除了在空气中进行的实验外,我们还展示了受生物启发的超疏油水/固体界面,对水下油滴和血小板没有特殊的粘附性。在这些实验中,微结构和纳米结构中截留的高含量水在减少油滴和血小板的粘附方面起着关键作用。这些发现将使人们对新型抗生物粘附材料的设计没有创新见解。

著录项

  • 来源
    《Accounts of Chemical Research》 |2010年第3期|p.368-377|共10页
  • 作者单位

    †Beijing National Laboratory for Molecular Sciences (BNLMS), Center forMolecular Sciences, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, P. R. China,‡National Centre for NanoScience andTechnology, Beijing 100190, P. R. China, and §School of Chemistry andEnvironment, Beijing University of Aeronautics and Astronautics,Beijing 100191, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:24:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号