首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Surface patterning of a novel PEG‐functionalized poly‐l‐lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents
【2h】

Surface patterning of a novel PEG‐functionalized poly‐l‐lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents

机译:新型PEG功能化聚乳酸聚合物的表面图案化以改善其生物相容性:在生物可吸收血管支架中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Today, research in the field of bioresorbable vascular stents (BVS) not only focusses on a new material being nontoxic but also tries to enhance its biocompatibility in terms of endothelialization potential and hemocompatibility. To this end, we used picosecond laser ablation technology as a single‐step and contactless method for surface microstructuring of a bioresorbable polymer which can be utilized in stent manufacture. The method works on all materials via fast material removal, can be easily adapted for micropatterning of tubular or more complex sample shapes and scaled up by means of micropatterning of metal molds for manufacturing. Here, picosecond laser ablation was applied to a bioresorbable, biologically inactive and polyethylene glycol‐modified poly‐l‐lactide polymer (PEGylated PLLA) to generate parallel microgrooves with varying geometries. The different patterns were thoroughly evaluated by a series of cyto‐ and hemocompatibility tests revealing that all surfaces were non‐toxic and non‐hemolytic. More importantly, patterns with 20 to 25 µm wide and 6 to 7 µm deep grooves significantly enhanced endothelial cell adhesion in comparison to samples with smaller grooves. Here, human cardiac microvascular endothelial cells were found to align along the groove direction, which is thought to encourage endothelialization of intraluminal surfaces of BVS. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000–000, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 624–634, 2019.
机译:如今,生物可吸收血管支架(BVS)领域的研究不仅集中于一种无毒的新材料,而且还试图从内皮化潜力和血液相容性方面增强其生物相容性。为此,我们使用皮秒激光烧蚀技术作为可生物吸收的聚合物的表面微结构化的单步和非接触式方法,该方法可用于支架制造。该方法可通过快速去除材料对所有材料起作用,可轻松适用于管状或更复杂的样品形状的微图案化,并通过制造金属模具的微图案化按比例放大。在这里,皮秒激光烧蚀应用于生物可吸收的,无生物活性的聚乙二醇改性的聚丙交酯聚合物(PEG化PLLA),以产生具有不同几何形状的平行微槽。通过一系列细胞和血液相容性测试彻底评估了不同的模式,发现所有表面均无毒且无溶血作用。更重要的是,与具有较小凹槽的样品相比,具有20至25 µm宽度和6至7 µm深凹槽的图案可显着增强内皮细胞的粘附力。在这里,发现人类心脏微血管内皮细胞沿凹槽方向排列,这被认为可以促进BVS腔内表面的内皮化。 ©2018作者,《生物医学材料研究杂志》第B部分:由Wiley Periodicals,Inc.出版的应用生物材料。J Biomed Mater Res第B部分:Appl Biomater 00B:000–000,2018。©2018 Wiley Periodicals,Inc. J Biomed Mater Res部分B:Appl Biomater 107B:624–634,2019年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号