首页> 美国卫生研究院文献>Springer Open Choice >The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore-Unit Assembly Method
【2h】

The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore-Unit Assembly Method

机译:膨胀和孔隙率变化对毛细作用的影响:DEM结合孔单元组装方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, a grain-scale modelling technique has been developed to generate the capillary pressure–saturation curves for swelling granular materials. This model employs only basic granular properties such as particles size distribution, porosity, and the amount of absorbed water for swelling materials. Using this model, both drainage and imbibition curves are directly obtained by pore-scale simulations of fluid invasion. This allows us to produce capillary pressure–saturation curves for a large number of different packings of granular materials with varying porosity and/or amount of absorbed water. The algorithm is based on combining the Discrete Element Method for generating different particle packings with a pore-unit assembly approach. The pore space is extracted using a regular triangulation, with the centres of four neighbouring particles forming a tetrahedron. The pore space within each tetrahedron is referred to as a pore unit. Thus, the pore space of a particle packing is represented by an assembly of pore units for which we construct drainage and imbibition capillary pressure–saturation curves. A case study on Hostun sand is conducted to test the model against experimental data from literature and to investigate the required minimum number of particles to have a Representative Elementary Volume. Then, the capillary pressure–saturation curves are constructed for Absorbent Gelling Material particles, for different combinations of porosity values and amounts of absorbed water. Each combination yields a different configuration of pore units, and thus distinctly different capillary pressure–saturation curves. All these curves are shown to collapse into one curve for drainage and one curve for imbibition when we normalize capillary pressure and saturation values. We have developed a formula for the Van Genuchten parameter α (which is related to the inverse of the entry pressure) as a function of porosity and the amount of absorbed water.
机译:在这项研究中,已开发出一种晶粒度建模技术来生成膨胀的粒状材料的毛细管压力-饱和度曲线。该模型仅采用基本的颗粒特性,例如粒度分布,孔隙率和溶胀材料吸收的水量。使用该模型,可以通过流体入侵的孔隙尺度模拟直接获得排水曲线和吸水曲线。这使我们能够针对孔隙率和/或吸收水量不同的大量不同颗粒材料填充物生成毛细管压力-饱和度曲线。该算法基于将离散元素方法(用于生成不同的粒子堆积)与孔单元组装方法相结合。使用规则的三角剖分提取孔隙空间,四个相邻粒子的中心形成一个四面体。每个四面体内的孔空间称为孔单元。因此,颗粒堆积的孔隙空间由孔隙单元的集合表示,为此我们构建了排水和吸收毛细管压力-饱和度曲线。对Hostun砂进行了案例研究,以根据文献中的实验数据测试该模型,并研究具有代表性基本体积所需的最小颗粒数。然后,针对孔隙率值和吸收水量的不同组合,构造吸收性胶凝材料颗粒的毛细压力-饱和度曲线。每种组合产生的孔单元配置不同,因此毛细管压力-饱和度曲线也明显不同。当我们标准化毛细管压力和饱和度值时,所有这些曲线都显示为塌陷为一条曲线,吸收为一条曲线。我们已经开发出Van Genuchten参数α(与入口压力的倒数有关)随孔隙度和吸收水量的函数的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号