首页> 美国卫生研究院文献>Springer Open Choice >Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum
【2h】

Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum

机译:毛白僵菌LH2中通过振动耦合的类胡萝卜素到细菌叶绿素的能量转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure–function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments—with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.Electronic supplementary materialThe online version of this article (doi:10.1007/s11120-017-0398-3) contains supplementary material, which is available to authorized users.
机译:紫色光合细菌的外围光收集天线复合体(LH2)由于其确定的分子结构和超快的能量失活,是结构与功能关系模型的理想测试场。它已成为理论和超快光谱学领域众多研究的目标。然而,LH2的回旋弛豫网络的某些方面缺乏传统理论的令人满意的解释。例如,长期以来,人们一直认为可见光激发所需的初始类胡萝卜素至细菌叶绿素能量转移步骤遵循了Förster机理,尽管已观察到转移时间短至40飞秒(fs)。 Förster理论很难适应这样的传输时间,因为LH2中适度的耦合强度表明该框架内的传输要慢得多。在这项研究中,我们通过两种类型的瞬态吸收实验研究了Phaeospirillum(ph。)molischianum中的LH2-窄带泵和白光探针可产生100 fs的时间分辨率,以及退化的宽带10 fs泵和探针脉冲。关于在该系统中分离的Qx谱带,我们证明了通过玻璃纤维介导的转移既解释了超快速的类胡萝卜素向B850的转移,也解释了几乎完全缺乏向B800的转移。这些结果超出了Förster理论,后者预测了两个通道之间的分配几乎相等。电子补充材料本文的在线版本(doi:10.1007 / s11120-017-0398-3)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号