首页> 美国卫生研究院文献>Springer Open Choice >Robust EEG/MEG Based Functional Connectivity with the Envelope of the Imaginary Coherence: Sensor Space Analysis
【2h】

Robust EEG/MEG Based Functional Connectivity with the Envelope of the Imaginary Coherence: Sensor Space Analysis

机译:基于虚幻相干性的稳健的基于EEG / MEG的功能连接:传感器空间分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The brain’s functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can provide quick and useful information towards understanding cognition and brain disorders. Volume conduction (VC) is a fundamental issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the imaginary part of the coherence (iCOH) of any two signals are readily robust to VC effects, but neglecting the real part of the coherence leads to negligible FC when the processes are truly connected but with zero or π-phase (modulus 2π) interaction. We ameliorate this issue by proposing a novel method that implements an envelope of the imaginary coherence (EIC) to approximate the coherence estimate of supposedly active underlying sources. We compare EIC with state-of-the-art FC measures that included lagged coherence, iCOH, phase lag index (PLI) and weighted PLI (wPLI), using bivariate autoregressive and stochastic neural mass models. Additionally, we create realistic simulations where three and five regions were mapped on a template cortical surface and synthetic MEG signals were obtained after computing the electromagnetic leadfield. With this simulation and comparison study, we also demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst varying the signal’s noise level. However, these results should be interpreted with caution given the known limitations of the sensor-based FC approach. Overall, we found that EIC and iCOH demonstrate superior results with most accurate FC maps. As they complement each other in different scenarios, that will be important to study normal and diseased brain activity.Electronic supplementary materialThe online version of this article (10.1007/s10548-018-0640-0) contains supplementary material, which is available to authorized users.
机译:根据电磁(EEG / MEG)信号在传感器级别估计的大脑功能连接(FC),可以为了解认知和脑部疾病提供快速而有用的信息。由于瞬时相关的影响,体积传导(VC)是FC分析中的一个基本问题。基于任何两个信号的相干虚部(iCOH)的FC方法很容易获得VC效果,但是当过程真正连接但具有零相或π相时,忽略相干的实部会导致FC可以忽略不计(模数2π)相互作用。我们通过提出一种新颖的方法来改善此问题,该方法实现了虚相干性(EIC)的包络,以近似估计据称活跃的潜在来源的相干性估计。我们使用双变量自回归和随机神经质量模型,将EIC与包括滞后相干性,iCOH,相位滞后指数(PLI)和加权PLI(wPLI)的最新FC措施进行比较。此外,我们创建了逼真的仿真,其中在模板皮层表面上映射了三个和五个区域,并在计算了电磁场后获得了合成MEG信号。通过此仿真和比较研究,我们还证明了使用接收器工作曲线分析进行传感器FC分析的可行性,同时可以改变信号的噪声水平。但是,鉴于基于传感器的FC方法的已知局限性,应谨慎解释这些结果。总体而言,我们发现EIC和iCOH在最精确的FC映射中显示出优异的结果。由于它们在不同的情况下会相互补充,因此对于研究正常和患病的大脑活动至关重要。电子补充材料本文的在线版本(10.1007 / s10548-018-0640-0)包含补充材料,授权用户可以使用。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号