首页> 美国卫生研究院文献>Springer Open Choice >A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia
【2h】

A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia

机译:用于了解外膜胶原纤维网络微力学的计算模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abdominal aortic aneurysm is a prevalent cardiovascular disease with high mortality rates. The mechanical response of the arterial wall relies on the organizational and structural behavior of its microstructural components, and thus, a detailed understanding of the microscopic mechanical response of the arterial wall layers at loads ranging up to rupture is necessary to improve diagnostic techniques and possibly treatments. Following the common notion that adventitia is the ultimate barrier at loads close to rupture, in the present study, a finite element model of adventitial collagen network was developed to study the mechanical state at the fiber level under uniaxial loading. Image stacks of the rabbit carotid adventitial tissue at rest and under uniaxial tension obtained using multi-photon microscopy were used in this study, as well as the force–displacement curves obtained from previously published experiments. Morphological parameters like fiber orientation distribution, waviness, and volume fraction were extracted for one sample from the confocal image stacks. An inverse random sampling approach combined with a random walk algorithm was employed to reconstruct the collagen network for numerical simulation. The model was then verified using experimental stress–stretch curves. The model shows the remarkable capacity of collagen fibers to uncrimp and reorient in the loading direction. These results further show that at high stretches, collagen network behaves in a highly non-affine manner, which was quantified for each sample. A comprehensive parameter study to understand the relationship between structural parameters and their influence on mechanical behavior is presented. Through this study, the model was used to conclude important structure–function relationships that control the mechanical response. Our results also show that at loads close to rupture, the probability of failure occurring at the fiber level is up to 2%. Uncertainties in usually employed rupture risk indicators and the stochastic nature of the event of rupture combined with limited knowledge on the microscopic determinants motivate the development of such an analysis. Moreover, this study will advance the study of coupling microscopic mechanisms to rupture of the artery as a whole.
机译:腹主动脉瘤是一种常见的心血管疾病,死亡率很高。动脉壁的机械反应取决于其微结构组件的组织和结构行为,因此,有必要详细了解在直至破裂的载荷下动脉壁层的微观机械反应,以改善诊断技术和可能的治疗方法。遵循通常的观点,即在接近破裂的载荷下,外膜是最终的屏障,在本研究中,开发了外膜胶原网络的有限元模型,以研究单轴载荷下纤维水平的机械状态。在这项研究中使用了在静止和单轴张力下使用多光子显微镜获得的兔颈动脉外膜组织的图像堆栈,以及从先前发表的实验中获得的力-位移曲线。从共聚焦图像堆栈中提取了一个样品的形态参数,如纤维取向分布,波纹度和体积分数。逆随机抽样方法结合随机游走算法被用于重建胶原网络,进行数值模拟。然后使用实验应力-拉伸曲线验证模型。该模型显示出胶原纤维在加载方向上无卷曲和重新定向的显着能力。这些结果进一步表明,在高拉伸下,胶原蛋白网络表现出高度非仿射的方式,对每个样品都进行了量化。进行了全面的参数研究,以了解结构参数之间的关系及其对机械性能的影响。通过这项研究,该模型被用于总结控制机械响应的重要结构-功能关系。我们的结果还表明,在接近破裂的载荷下,在纤维水平发生破坏的可能性高达2%。通常使用的破裂风险指标的不确定性和破裂事件的随机性质,加上对微观决定因素的有限了解,促使了这种分析的发展。而且,这项研究将促进对整个动脉破裂的微观机制的耦合研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号