首页> 美国卫生研究院文献>Scientific Reports >Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications
【2h】

Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

机译:石墨烯-硒混合微球作为高性能锂-硒二次电池应用的阴极材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g−1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g−1 after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g−1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.
机译:在本研究中,使用商业喷雾干燥器通过气溶胶微滴干燥一步制备石墨烯-硒混合微球(G-SeHMs),这代表了一种简单,可扩展的连续过程,并研究了由此制备的G-SeHMs的潜力用作锂硒二次电池的正极材料。这些充满硒颗粒的形态独特的石墨烯微球表现出良好的电化学性能,例如高的初始比容量(0.1 C时的642 mA hg -1 ,相当于硒的电化学利用率高达95.1%),循环稳定性(在0.1 C下100次循环后544 mA hg -1 ;保留率84.5%)和高倍率能力(在5specificC时的比容量301 mA hg -1 ) 。这些电化学性质归因于以下事实:G-SeHM结构充当抑制聚硒化物在有机电解质中溶解的限制基质,以及电子传导路径,可提高电化学反应中电子的传输速率。值得注意的是,基于杂化材料的重量,由于杂化材料中的高硒负载量(80 wt%),电化学性能明显优于以前报道的基于硒的阴极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号