首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Unlocking the mystery behind the activation phenomenon of T1 lipase: A molecular dynamics simulations approach
【2h】

Unlocking the mystery behind the activation phenomenon of T1 lipase: A molecular dynamics simulations approach

机译:揭开T1脂肪酶激活现象背后的谜团:分子动力学模拟方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.
机译:假定脂肪酶的活化通过界面活化,温度转换活化或水活化来进行。最近,基于分子动力学(MD)模拟实验,提出了T1脂肪酶激活机制除双瓣机制外还涉及水活化。由于开放的构象结构仍然不可用,因此很难明确地验证所提出的理论以理解酶的行为。在这项研究中,我们尝试验证先前的报告,并使用结构分析和MD模拟揭示激活过程背后的奥秘。为了研究温度和环境条件对活化过程的影响,在不同的溶剂环境(水和水-辛烷界面)和温度(20、50、70、80和100°C)下进行了MD模拟。基于同一家族的T1脂肪酶(I.5脂肪酶家族)中脂肪酶的结构分析,我们提出盖结构域包含通过环连接的α6和α7螺旋,从而形成了一个涉及环的螺旋-环-螺旋基序界面活化。在整个MD模拟实验中,就温度影响而言,仅在水-辛烷界面中观察到盖位移,而在水环境中未观察到盖位移,这表明活化过程是由界面活化与温度开关活化共同控制的。详细检查活化过程发现,盖结构域的大结构重排是由盖的疏水残基与辛烷(一种非极性溶剂)之间的相互作用引起的,并且发现该构象在热力学上是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号