首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Geometrically controlled snapping transitions in shells with curved creases
【2h】

Geometrically controlled snapping transitions in shells with curved creases

机译:具有弯曲折痕的壳体中的几何控制捕捉过渡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Curvature and mechanics are intimately connected for thin materials, and this coupling between geometry and physical properties is readily seen in folded structures from intestinal villi and pollen grains to wrinkled membranes and programmable metamaterials. While the well-known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood. Shells naturally deform by simultaneously bending and stretching, and while this coupling gives them great stability for engineering applications, it makes folding a surface of arbitrary curvature a nontrivial task. Here we discuss the geometry of folding a creased shell, and demonstrate theoretically the conditions under which it may fold smoothly. When these conditions are violated we show, using experiments and simulations, that shells undergo rapid snapping motion to fold from one stable configuration to another. Although material asymmetry is a proven mechanism for creating this bifurcation of stability, for the case of a creased shell, the inherent geometry itself serves as a barrier to folding. We discuss here how two fundamental geometric concepts, creases and curvature, combine to allow rapid transitions from one stable state to another. Independent of material system and length scale, the design rule that we introduce here explains how to generate snapping transitions in arbitrary surfaces, thus facilitating the creation of programmable multistable materials with fast actuation capabilities.
机译:对于薄材料,曲率和力学紧密相连,并且在从肠绒毛和花粉颗粒到起皱的膜和可编程超材料的折叠结构中,很容易看到几何形状和物理特性之间的这种耦合。尽管已经使用了折叠平面后的众所周知的规则和机制来创建可展开的结构和可变形的材料,但从根本上仍不了解弯曲壳体的折叠。壳体通过同时弯曲和拉伸而自然变形,尽管这种耦合为工程应用提供了极大的稳定性,但使折叠任意曲率的曲面成为一项艰巨的任务。在这里,我们讨论折叠折痕形外壳的几何形状,并从理论上证明其可以平滑折叠的条件。当违反这些条件时,我们通过实验和模拟表明,壳会经历快速的折断运动,从一种稳定的构型折叠到另一种稳定的构型。尽管材料的不对称性是造成这种稳定性分歧的一种行之有效的机制,但对于折皱的外壳,其固有的几何形状本身就是折叠的障碍。我们在这里讨论两个基本的几何概念(折痕和曲率)如何组合以允许从一种稳定状态快速过渡到另一种稳定状态。与材料系统和长度比例无关,我们在此处介绍的设计规则说明了如何在任意表面上生成捕捉过渡,从而有助于创建具有快速驱动功能的可编程多稳态材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号