首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale
【2h】

Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale

机译:降低变形各向异性,以实现纳米级Mg的超高强度和延展性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In mechanical deformation of crystalline materials, the critical resolved shear stress (CRSS; τCRSS) is the stress required to initiate movement of dislocations on a specific plane. In plastically anisotropic materials, such as Mg, τCRSS for different slip systems differs greatly, leading to relatively poor ductility and formability. However, τCRSS for all slip systems increases as the physical dimension of the sample decreases to approach eventually the ideal shear stresses of a material, which are much less anisotropic. Therefore, as the size of a sample gets smaller, the yield stress increases and τCRSS anisotropy decreases. Here, we use in situ transmission electron microscopy mechanical testing and atomistic simulations to demonstrate that τCRSS anisotropy can be significantly reduced in nanoscale Mg single crystals, where extremely high stresses (∼2 GPa) activate multiple deformation modes, resulting in a change from basal slip-dominated plasticity to a more homogeneous plasticity. Consequently, an abrupt and dramatic size-induced “brittle-to-ductile” transition occurs around 100 nm. This nanoscale change in the CRSS anisotropy demonstrates the powerful effect of size-related deformation mechanisms and should be a general feature in plastically anisotropic materials.
机译:在晶体材料的机械变形中,临界分辨剪切应力(CRSS;τCRSS)是引发位错在特定平面上运动所需的应力。在塑性各向异性材料(例如Mg)中,用于不同滑移系统的τCRSS差异很大,导致延展性和可成型性相对较差。但是,随着样品物理尺寸的减小,最终接近材料的理想剪切应力,所有滑动系统的τCRSS都会增加,而各向异性要小得多。因此,随着样品尺寸的减小,屈服应力增加,τCRSS各向异性减小。在这里,我们使用原位透射电子显微镜机械测试和原子模拟来证明,在纳米级Mg单晶中τCRSS各向异性可以显着降低,其中极高的应力(〜2 GPa)激活了多种变形模式,从而导致了基底滑移的变化。主导的可塑性到更均匀的可塑性。因此,在100 nm左右会发生突然而剧烈的尺寸诱发的“脆性-延性”转变。 CRSS各向异性的这种纳米级变化证明了尺寸相关变形机制的强大作用,应该是塑性各向异性材料的普遍特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号