首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin
【2h】

Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin

机译:硫的循环和甲烷生成主要驱动高度硫化的Urania深高盐盆地的微生物定殖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines δ- and ε-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.
机译:地中海深处的Urania盆地拥有一个深100m以上的湖,没有氧气,是海水的6倍,并且甲烷,尤其是硫化物的含量非常高(最高16 mM),使其成为其中一个最地球上的硫化水体。沿深度剖面,有2种趋化线,其中一种陡峭,上面有含氧海水,另一种介于不同密度的无氧盐水之间,在其中出现了盐度,电子给体和受体的梯度。为了鉴定和区分有助于沿水柱转换有机物和硫化物的微生物和过程,以高分辨率对这些趋化因子进行了采样。由于提高了养分的利用率,在趋化线中细菌细胞数量增加了一百倍,其中上部界面的氧化还原梯度更陡,细菌细胞数量增加了。通过DNA指纹图谱,16S rRNA基因文库,活性测量和培养分析的细菌和古细菌群落与海水或统一的高盐盐水相比,沿化学趋化层高度分层且在代谢上更具活性。对16S rRNA基因序列的详细分析显示,在Chemoclineδ-和ε-Proteobacteria中,硫酸盐还原剂和硫氧化剂分别是主要细菌。在盆地的最深层,MSBL1被认为是甲烷生成的主要原因,在古细菌中占主导地位。数据表明,复杂的微生物群落适应了该盆地的极端化学性质,而升高的生物量主要由硫循环和甲烷生成驱动。

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号