首页> 美国卫生研究院文献>PLoS Computational Biology >Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines
【2h】

Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines

机译:ClpY ATPase纳米机介导的蛋白质解折叠和易位的拓扑依赖机制的粗粒度模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation.
机译:Clp ATPases是强大的环状纳米机器,参与蛋白质质量控​​制系统的降解途径,将ATP水解产生的能量通过其狭窄的中央孔耦合到底物蛋白质(SP)。连续的环内ATP水解事件的重复循环引起形成隔膜的中心孔环的轴向偏移,从而影响将机械力施加到SP上以促进展开和易位。我们对ClpY ATPase-SP系统的粗粒模型进行Langevin动力学模拟,以阐明α/β模型蛋白的展开和易位的分子细节。我们将此机制与我们先前使用全αSP的研究进行了对比。我们发现变构ClpY的展开和易位机制的保守方面,包括在标记的C端起始的展开和通过中风机制的易位。特定于拓扑的方面包括时间尺度,降解途径中的速率限制步骤,力方向性的影响和移位酶的功效。 ClpY辅助展开和易位的机制不同于非变构机械牵拉的机制。模仿原子力显微镜类型拉动的本体展开模拟揭示了在C端,N端或同时从两个端头开始的多个展开途径。在非变构ClpY ATPase孔中,以恒定速度进行机械牵拉会产生更大的SP展开有效力,而以恒定力进行牵拉会同时导致展开和易位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号