首页> 美国卫生研究院文献>PLoS Clinical Trials >Modelling mesenchymal stromal cell growth in a packed bed bioreactor with a gas permeable wall
【2h】

Modelling mesenchymal stromal cell growth in a packed bed bioreactor with a gas permeable wall

机译:在具有透气壁的填充床生物反应器中模拟间充质基质细胞生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A mathematical model was developed for mesenchymal stromal cell (MSC) growth in a packed bed bioreactor that improves oxygen availability by allowing oxygen diffusion through a gas-permeable wall. The governing equations for oxygen, glucose and lactate, the inhibitory waste product, were developed assuming Michaelis-Menten kinetics, together with an equation for the medium flow based on Darcy’s Law. The conservation law for the cells includes the effects of inhibition as the cells reach confluence, nutrient and waste product concentrations, and the assumption that the cells can migrate on the scaffold. The equations were solved using the finite element package, COMSOL. Previous experimental results collected using a packed bed bioreactor with gas permeable walls to expand MSCs produced a lower cell yield than was obtained using a traditional cell culture flask. This mathematical model suggests that the main contributors to the observed low cell yield were a non-uniform initial cell seeding profile and a potential lag phase as cells recovered from the initial seeding procedure. Lactate build-up was predicted to have only a small effect at lower flow rates. Thus, the most important parameters to optimise cell expansion in the proliferation of MSCs in a bioreactor with gas permeable wall are the initial cell seeding protocol and the handling of the cells during the seeding process. The mathematical model was then used to identify and characterise potential enhancements to the bioreactor design, including incorporating a central gas permeable capillary to further enhance oxygen availability to the cells. Finally, to evaluate the issues and limitations that might be encountered scale-up of the bioreactor, the mathematical model was used to investigate modifications to the bioreactor design geometry and packing density.
机译:为填充床生物反应器中的间充质基质细胞(MSC)生长建立了数学模型,该模型通过允许氧气扩散通过透气壁来提高氧气利用率。氧气,葡萄糖和乳酸盐(一种抑制性废物)的控制方程式是在假设Michaelis-Menten动力学的前提下,以及基于达西定律的介质流量方程式开发的。细胞的守恒定律包括细胞达到汇合时的抑制作用,营养物质和废物的浓度,以及细胞可以在支架上迁移的假设。使用有限元软件包COMSOL求解方程。使用具有透气壁的填充床生物反应器扩展MSC收集的先前实验结果产生的细胞产率低于使用传统细胞培养瓶获得的细胞产率。该数学模型表明,观察到的低细胞产量的主要贡献是初始细胞播种过程不均匀以及从初始播种过程中恢复的细胞潜在的滞后阶段。预测乳酸积累在较低流速下仅会产生很小的影响。因此,在具有透气壁的生物反应器中优化MSC增殖中细胞扩增的最重要参数是初始细胞接种方案和接种过程中的细胞处理。然后,该数学模型用于识别和表征生物反应器设计的潜在增强功能,包括并入中央透气毛细管以进一步增强细胞的氧利用率。最后,为了评估生物反应器按比例放大可能遇到的问题和局限性,使用数学模型研究了对生物反应器设计几何形状和填充密度的修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号