首页> 美国卫生研究院文献>PLoS Clinical Trials >GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration
【2h】

GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration

机译:GDTN:使用UA间协作在异构5G中基于基因组的延迟容忍网络形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment.
机译:随着互联网知识和复杂用户群的增加,对交互式应用程序和服务的需求也越来越高。但是,对于现有的无线电接入网(例如3G和4G)来说,挑战是要满足日益增长的要求,例如更高的数据速率和更宽的覆盖范围。一种潜在的解决方案是在5G环境中跨无线协作部署多个无线电设备,旨在满足严格的用户需求,并促进基础网络中的高数据速率要求。这些异构的5G网络可以轻松解决数据速率和覆盖范围的挑战。使用现有网络的混合建立的网络具有多种军事和民用应用。但是,此类网络存在固有的局限性,例如不规则的故障,节点故障以及速度传输过程中的暂停。近年来,已经尝试将异构5G网络与现有的ad hoc网络进行集成,以提供一种可靠的解决方案,以分组交换网络的形式实现耐延迟的传输。然而,在这些网络中仍然需要连续的连接性,以便有效地调节流量以允许形成健壮的网络。因此,在本文中,我们提出了一种新颖的网络结构,该结构由无人飞机(UA)操纵的来自不同网络的节点组成。所提出的模型利用了基因组生物学方面的特征,并与现有的网络模型形成了一个延迟容忍网络。这使我们能够提供连续而强大的连接性。然后,基于实时测试平台和仿真环境中的评估,与现有方法相比,我们证明了所提出的网络模型具有高效的数据传递,较低的开销和较小的延迟以及较高的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号