首页> 美国卫生研究院文献>PLoS Clinical Trials >Mathematical Modelling of Polyamine Metabolism in Bloodstream-Form Trypanosoma brucei: An Application to Drug Target Identification
【2h】

Mathematical Modelling of Polyamine Metabolism in Bloodstream-Form Trypanosoma brucei: An Application to Drug Target Identification

机译:血型布鲁氏锥虫中多胺代谢的数学模型:在药物靶标识别中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.
机译:我们介绍了人类形式的非洲锥虫病的病原体布鲁氏锥虫血形式的多胺代谢的第一个计算动力学模型。我们从完整的代谢网络中系统地提取了多胺途径,同时仍保持了该途径的预测能力。动力学模型是基于从实验生物学文献中收集的信息构建的,并定义为一组常微分方程。我们应用具有调节因子的Michaelis-Menten动力学描述了定义明确的酶促活性。用系统的可用生理学性质来估计和表征未表征的酶动力学。进行了基于优化的动态仿真,以使用实验数据训练模型,而不一致的预测则引发了模型优化的迭代过程。模拟结果与在各种实验条件下报告的测量数据之间的良好一致性表明,尽管所需数据存在差距,该模型仍具有良好的适用性。使用该动力学模型,评估了各个途径酶的相对重要性。我们观察到,在低至中度的抑制水平下,与该途径中的其他酶相比,从头催化AdoMet(MAT)和鸟氨酸生产(OrnPt)的酶对总锥虫苷含量具有更有效的抑制作用。在我们的模型中,还发现了蛋白酶和TSHSyn(总锥虫苷的生产催化剂)对总锥虫苷的含量具有有效的控制作用,但只有在它们被强烈抑制时才有效。使用该模型研究了针对布鲁氏杆菌的不同化学疗法,通过联合抑制MAT或OrnPt以及其他多胺酶来中断多胺合成被确定为最佳治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号