首页> 美国卫生研究院文献>PLoS Clinical Trials >From Molecular Signal Activation to Locomotion: An Integrated Multiscale Analysis of Cell Motility on Defined Matrices
【2h】

From Molecular Signal Activation to Locomotion: An Integrated Multiscale Analysis of Cell Motility on Defined Matrices

机译:从分子信号激活到运动:对定义矩阵的细胞运动性的综合多尺度分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The adhesion, mechanics, and motility of eukaryotic cells are highly sensitive to the ligand density and stiffness of the extracellular matrix (ECM). This relationship bears profound implications for stem cell engineering, tumor invasion and metastasis. Yet, our quantitative understanding of how ECM biophysical properties, mechanotransductive signals, and assembly of contractile and adhesive structures collude to control these cell behaviors remains extremely limited. Here we present a novel multiscale model of cell migration on ECMs of defined biophysical properties that integrates local activation of biochemical signals with adhesion and force generation at the cell-ECM interface. We capture the mechanosensitivity of individual cellular components by dynamically coupling ECM properties to the activation of Rho and Rac GTPases in specific portions of the cell with actomyosin contractility, cell-ECM adhesion bond formation and rupture, and process extension and retraction. We show that our framework is capable of recreating key experimentally-observed features of the relationship between cell migration and ECM biophysical properties. In particular, our model predicts for the first time recently reported transitions from filopodial to “stick-slip” to gliding motility on ECMs of increasing stiffness, previously observed dependences of migration speed on ECM stiffness and ligand density, and high-resolution measurements of mechanosensitive protrusion dynamics during cell motility we newly obtained for this study. It also relates the biphasic dependence of cell migration speed on ECM stiffness to the tendency of the cell to polarize. By enabling the investigation of experimentally-inaccessible microscale relationships between mechanotransductive signaling, adhesion, and motility, our model offers new insight into how these factors interact with one another to produce complex migration patterns across a variety of ECM conditions.
机译:真核细胞的粘附,力学和运动性对细胞外基质(ECM)的配体密度和硬度高度敏感。这种关系对干细胞工程,肿瘤侵袭和转移具有深远的意义。然而,我们对ECM的生物物理特性,机械转导信号以及收缩和粘附结构的装配如何共同控制这些细胞行为的定量理解仍然极为有限。在这里,我们介绍了在已定义的生物物理特性的ECM上的细胞迁移的新型多尺度模型,该模型整合了生化信号的局部激活与细胞ECM界面处的粘附和力生成。我们通过将肌动蛋白收缩性,细胞-ECM黏附键的形成和破裂以及过程的扩展和缩回动态结合的ECM特性与Rho和Rac GTPases在细胞特定部位的激活动态耦合来捕获单个细胞成分的机械敏感性。我们表明,我们的框架能够重建细胞迁移和ECM生物物理特性之间关系的关键实验观察到的特征。特别是,我们的模型首次预测了最近报道的刚度增加的ECM的滑行运动向滑动运动的转变,以及先前观察到的迁移速度对ECM刚度和配体密度的依赖性以及对机械敏感的高分辨率测量我们为这项研究新获得的细胞运动过程中的突出动态。它还将细胞迁移速度对ECM刚度的两相依赖性与细胞极化的趋势相关。通过研究机械转导信号,粘附和运动之间实验上无法接近的微观关系,我们的模型为这些因素如何相互作用以在各种ECM条件下产生复杂的迁移模式提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号