首页> 美国卫生研究院文献>PLoS Clinical Trials >The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons
【2h】

The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons

机译:缓慢的电刺激对大鼠皮质神经元培养网络中学习的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Learning, or more generally, plasticity may be studied using cultured networks of rat cortical neurons on multi electrode arrays. Several protocols have been proposed to affect connectivity in such networks. One of these protocols, proposed by Shahaf and Marom, aimed to train the input-output relationship of a selected connection in a network using slow electrical stimuli. Although the results were quite promising, the experiments appeared difficult to repeat and the training protocol did not serve as a basis for wider investigation yet. Here, we repeated their protocol, and compared our ‘learning curves’ to the original results. Although in some experiments the protocol did not seem to work, we found that on average, the protocol showed a significantly improved stimulus response indeed. Furthermore, the protocol always induced functional connectivity changes that were much larger than changes that occurred after a comparable period of random or no stimulation. Finally, our data shows that stimulation at a fixed electrode induces functional connectivity changes of similar magnitude as stimulation through randomly varied sites; both larger than spontaneous connectivity fluctuations. We concluded that slow electrical stimulation always induced functional connectivity changes, although uncontrolled. The magnitude of change increased when we applied the adaptive (closed-loop) training protocol. We hypothesize that networks develop an equilibrium between connectivity and activity. Induced connectivity changes depend on the combination of applied stimulus and initial connectivity. Plain stimuli may drive networks to the nearest equilibrium that accommodates this input, whereas adaptive stimulation may direct the space for exploration and force networks to a new balance, at a larger distance from the initial state.
机译:学习,或更普遍地说,可使用在多电极阵列上的大鼠皮质神经元的培养网络研究可塑性。已经提出了几种协议来影响这种网络中的连接性。 Shahaf和Marom提出的这些协议之一旨在使用缓慢的电刺激来训练网络中选定连接的输入输出关系。尽管结果令人鼓舞,但实验似乎很难重复,而且训练方案还没有作为更广泛研究的基础。在这里,我们重复了他们的协议,并将“学习曲线”与原始结果进行了比较。尽管在某些实验中该协议似乎无效,但我们发现平均而言,该协议确实显示出显着改善的刺激反应。此外,该协议总是引起功能连接性变化,该变化远大于在相当时期的随机刺激或无刺激后发生的变化。最后,我们的数据表明,固定电极上的刺激引起的功能连通性变化与通过随机变化的部位进行刺激的幅度相似。两者都大于自发的连接性波动。我们得出的结论是,缓慢的电刺激尽管不受控制,但始终会导致功能连接性改变。当我们应用自适应(闭环)训练协议时,变化的幅度增加了。我们假设网络在连通性和活动之间建立了平衡。诱导的连接性变化取决于所施加的刺激和初始连接性的组合。普通刺激可能会将网络驱使到最接近容纳该输入的平衡,而自适应刺激可能会引导探索空间并将网络推向新的平衡,距离初始状态的距离更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号