首页> 美国卫生研究院文献>PLoS Clinical Trials >Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia
【2h】

Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia

机译:能量代谢的独特灵活性使分枝杆菌可以对抗饥饿和缺氧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive under low energy conditions and hypoxia.
机译:分枝杆菌是一群需要氧气才能生长的专性需氧菌,但自相矛盾的是它们具有在缺氧条件下生存和代谢的能力。造成这种代谢可塑性的机制尚不清楚。在这里,我们报道了使用碳限制连续培养的耻垢分枝杆菌对减慢生长速度和缺氧的适应性。当在50%的恒定氧饱和度下,耻垢分枝杆菌从4.6 h倍增时间切换到69 h时,细胞通过下调呼吸链成分和F1Fo-ATP合酶做出反应,这与细胞对低氧的需求一致能源以较低的增长率增长。与此平行的是,分子机械的上调允许更有效的能量产生(即复合物I),并使用替代的电子供体(例如加氢酶和一级脱氢酶)来维持还原条件下电子传输链的流动。严格的能量限制。氢化酶突变体显示出生长产率降低了40%,突显了这种酶在适应低能量供应方面的重要性。在氧饱和度为50%的情况下,缓慢生长的细胞遭受缺氧(氧饱和度为0.6%),其反应是打开氧清除细胞色素bd,质子移位的细胞色素bc1-aa3超复合物,另一种推定的氢化酶并用NAD + -依赖性酶与铁氧还蛋白-依赖性酶从而突出了分枝杆菌适应缺氧的新模式。铁氧还蛋白和氢化酶的表达提供了在没有外源电子受体的情况下处置和转移电子的潜在途径。铁氧还蛋白依赖性酶的使用将使细胞通过其中心碳代谢维持高碳通量,而与NAD + / NADH比率无关。这些数据证明了分枝杆菌细胞具有显着的代谢可塑性,并为理解其在低能量条件和缺氧条件下的生存能力提供了新的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号