首页> 美国卫生研究院文献>Plant Physiology >Antisense Repression of Both ADP-Glucose Pyrophosphorylase and Triose Phosphate Translocator Modifies Carbohydrate Partitioning in Potato Leaves.
【2h】

Antisense Repression of Both ADP-Glucose Pyrophosphorylase and Triose Phosphate Translocator Modifies Carbohydrate Partitioning in Potato Leaves.

机译:ADP葡萄糖焦磷酸化酶和磷酸三磷酸酯转运蛋白的反义抑制均能修饰马铃薯叶片中的碳水化合物分配。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous experiments have shown that carbohydrate partitioning in leaves of potato (Solanum tuberosum L.) plants can be modified by antisense repression of the triose phosphate translocator (TPT), favoring starch accumulation during the light period, or by leaf-specific antisense repression of ADP-glucose pyrophosphorylase (AGPase), reducing leaf starch content. These experiments showed that starch and sucrose synthesis can partially replace each other. To determine how leaf metabolism acclimates to an inhibition of both pathways, transgenic potato (S. tuberosum L. cv Desiree) plants, with a 30% reduction of the TPT achieved by antisense repression, were transformed with an antisense cDNA of the small subunit of AGPase, driven by the leaf-specific ST-LS1 promoter. These double-transformed plants were analyzed with respect to their carbohydrate metabolism, and starch accumulation was reduced in all lines of these plants. In one line with a 50% reduction of AGPase activity, the rate of CO2 assimilation was unaltered. In these plants the stromal level of triose phosphate was increased, enabling a high rate of triose phosphate export in spite of the reduction of the TPT protein by antisense repression. In a second line with a 95% reduction of AGPase activity, the amount of chlorophyll was significantly reduced as a consequence of the lowered triose phosphate utilization capacity.
机译:先前的实验表明,马铃薯(Solanum tuberosum L.)植物叶片中碳水化合物的分配可通过反义阻遏磷酸磷酸三糖转运子(TPT),促进光照期间淀粉的积累或通过对ADP进行叶片特异性反义阻抑来改变-葡萄糖焦磷酸化酶(AGPase),可减少叶片淀粉含量。这些实验表明,淀粉和蔗糖的合成可以部分相互替代。为了确定叶片代谢如何适应两种途径的抑制作用,将反义抑制实现的TPT降低30%的转基因马铃薯(S. tuberosum L. cv Desiree)植物被转化为小亚基的反义cDNA。由叶特异性ST-LS1启动子驱动的AGPase。分析了这些双转化植物的碳水化合物代谢,并且在这些植物的所有品系中减少了淀粉积累。在AGPase活性降低50%的品系中,CO2同化率保持不变。在这些植物中,磷酸三糖的基质水平增加了,尽管通过反义阻遏而降低了TPT蛋白,但磷酸三糖的出口率却很高。在第二条线中,AGPase活性降低了95%,由于降低了磷酸三糖的利用能力,叶绿素的量显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号