首页> 美国卫生研究院文献>Oncotarget >Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells
【2h】

Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells

机译:MGMT对O6-异丙基dG的不良识别会触发FANC缺陷细胞中双链断裂介导的细胞死亡和微核诱导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS.
机译:甲磺酸异丙酯(IPMS)是甲磺酸酯中最有效的遗传毒性化合物。据信烷基磺酸酯的遗传毒性潜力是由于它们在鸟嘌呤的O6位的烷基化能力。了解响应IPMS诱导的DNA损伤而激活的主要修复途径对于分析IPMS的遗传毒性潜力很重要。在本研究中,鸡DT40和基于人类TK6细胞的DNA损伤反应(DDR)分析均显示,与EMS或MMS相比,FANC通路功能障碍导致对IPMS的敏感性更高。 O6-烷基dG主要由甲基鸟嘌呤甲基转移酶(MGMT)修复,而异丙基dG不太可能成为MGMT的底物。 IPMS及其异构体甲磺酸正丙基酯(nPMS)的细胞毒性潜力比较表明,异丙基部分避免了MGMT的识别,并导致更高的细胞毒性。接下来,微核(MN)分析表明,FANC缺乏会增加DT40细胞对IPMS诱导的MN的敏感性。 MGMT抑制剂O6-苄基鸟嘌呤(OBG)进行的预处理增加了用nPMS处理但未使用IPMS处理的DT40细胞的MN频率。最后,与野生型细胞相比,IPMS以时间依赖性方式诱导了FANC缺陷细胞中更多的双链断裂。总之,这些结果表明,源自IPMS的O6-异丙基dG无法通过MGMT识别,并且未修复的DNA损伤导致双链断裂,从而导致MN诱导。因此,FANC在防止IPMS引起的MN诱导和细胞死亡中起着关键作用。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号