首页> 美国卫生研究院文献>NeuroRx >Selective Manipulation of Neural Circuits
【2h】

Selective Manipulation of Neural Circuits

机译:神经回路的选择性操纵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.Electronic supplementary materialThe online version of this article (doi:10.1007/s13311-016-0425-7) contains supplementary material, which is available to authorized users.
机译:解开构成神经系统的复杂神经回路网络需要能够操纵特定回路的工具。遗传工具针对神经回路的最新发展为阐明其功能提供了前所未有的精度。在这里,我们描述了两种实现电路特异性的通用方法。第一种方法利用细胞的遗传特性(例如电路特有的转录因子)来驱动可操纵细胞功能的分子的表达。第二种方法利用电路的空间连通性来实现特异性:一种遗传元件在电路的起点引入,另一种在其末端引入。当两个遗传元素在神经元内结合时,它们可以改变其功能。通过将调节基因引入电路的起点或终点,可以将这两种通用方法结合使用,以允许操纵具有特定遗传同一性的神经元。我们考虑了这两种一般方法在操作的特异性和有效性方面的优缺点。我们还将回顾允许特定神经回路中功能获得和丧失的遗传技术。这些方法将光敏感通道(光遗传)或药物敏感通道(化学生成)引入形成特定电路的神经元。我们将这些工具与针对电路特定操作开发的其他工具进行比较,并描述每种工具的优势。最后,我们讨论如何将这些工具应用于识别介导行为的神经回路和修复神经连接。电子补充材料本文的在线版本(doi:10.1007 / s13311-016-0425-7)包含补充材料,可供授权用户使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号