首页> 美国卫生研究院文献>Materials >Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing
【2h】

Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing

机译:Al-Zn-Mg-Cu合金非等温时效过程中的组织演变及其对局部腐蚀的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition.
机译:提出了一种Al-Zn-Mg-Cu合金的非等温时效工艺,旨在适应大型零件时效过程中缓慢的加热/冷却过程。通过透射电子显微镜,高角度环形暗场成像和能量色散光谱分析了组织和化学的演变。检查了合金的时效硬化,以评估非等温过程中的强化行为。通过观察样品浸入EXCO溶液(2xxx和7xxx系列铝合金中的剥落腐蚀敏感性试验溶液,参考ASTM G34-01)来研究腐蚀行为。在冷却阶段观察到二次沉淀,导致沉淀数量密度增加。由于二次析出的联系效应,冷却阶段晶界析出物的分布从不连续转变为连续。在加热过程中,溶质在晶界沉淀物上富集,而在无沉淀区的消耗则逐渐增加,但在冷却过程中仍保持不变。经NIA(非等温老化)处理的试样的腐蚀从点蚀开始,然后转变为晶间腐蚀和剥落腐蚀。对于加热到190°C的试样,从点蚀到晶间腐蚀的过渡非常缓慢,但随着冷却过程的进行,其加速会略有加快。在非等温时效至过时效条件下的所有样品中,观察到向剥落腐蚀的转变非常缓慢,这表明其耐蚀性与RRA条件相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号