首页> 美国卫生研究院文献>Journal of Medical Devices >Mock Circulatory Loop Compliance Chamber Employing a Novel Real-Time Control Process
【2h】

Mock Circulatory Loop Compliance Chamber Employing a Novel Real-Time Control Process

机译:模拟循环回路遵从室采用新型实时控制过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of compliance chambers in mock circulatory loop construction is the predominant means of simulating arterial compliance. Utilizing mock circulatory loops as bench test methods for cardiac assist technologies necessitates that they must be capable of reproducing the circulatory conditions that would exist physiologically. Of particular interest is the ability to determine instantaneous compliance of the system, and the ability to change the compliance in real-time. This capability enables continuous battery testing of conditions without stopping the flow to change the compliance chamber settings, and the simulation of dynamic changes in arterial compliance. The method tested involves the use of a compliance chamber utilizing a circular natural latex rubber membrane separating the fluid and air portions of the device. Change in system compliance is affected by the airspace pressure, which creates more reaction force at the membrane to the fluid pressure. A pressure sensor in the fluid portion of the chamber and a displacement sensor monitoring membrane center deflection allow for real-time inputs to the control algorithm. A predefined numerical model correlates the displacement sensor data to the volume displacement of the membrane. The control algorithm involves a tuned π loop maintaining the volume distention of the membrane via regulation of the air space pressure. The proportional integral (PI) controller tuning was achieved by creating a computational model of the compliance chamber using Simulink™ Simscape® toolboxes. These toolboxes were used to construct a model of the hydraulic, mechanical, and pneumatic elements in the physical design. Parameter Estimation™ tools and Design Optimization™ methods were employed to determine unknown physical parameters in the system, and tune the process controller used to maintain the compliance setting. It was found that the resulting control architecture was capable of maintaining compliance along a pressure-volume curve and allowed for changes to the compliance set point curve without stopping the pulsatile flow.
机译:在模拟循环回路结构中使用顺应性腔室是模拟动脉顺应性的主要手段。利用模拟循环回路作为心脏辅助技术的基准测试方法,必须使它们必须能够再现生理上可能存在的循环状况。特别令人感兴趣的是确定系统即时合规性的能力以及实时更改合规性的能力。此功能可在不停止流动以更改顺应性腔室设置的情况下连续进行条件电池测试,并模拟动脉顺应性的动态变化。所测试的方法涉及使用顺应性腔室,该顺应性腔室利用圆形天然乳胶橡胶膜将装置的流体和空气部分分开。空气压力会影响系统顺应性的变化,这会在膜片上对流体压力产生更大的反作用力。腔室流体部分中的压力传感器和监测膜片中心偏斜的位移传感器允许对控制算法进行实时输入。预定义的数值模型将位移传感器数据与膜的体积位移相关联。控制算法包括一个调谐的π回路,通过调节空气压力来维持膜的体积膨胀。通过使用Simulink™Simscape ®工具箱创建顺应性腔室的计算模型,可以实现比例积分(PI)控制器的调整。这些工具箱用于在物理设计中构建液压,机械和气动元件的模型。使用Parameter Estimation™工具和Design Optimization™方法确定系统中未知的物理参数,并调整用于维持合规性设置的过程控制器。发现所得到的控制结构能够沿着压力-体积曲线保持顺应性,并允许在不停止脉动流的情况下改变顺应性设定点曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号