首页> 美国卫生研究院文献>The Journal of Biophysical and Biochemical Cytology >Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
【2h】

Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape

机译:从形状的热波动测量微管和肌动蛋白丝的抗弯刚度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin- labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.
机译:微管是长的蛋白丝,通过定义细胞形状并充当细胞内运动蛋白的轨道,在真核细胞中发挥结构功能。我们报告了微管弯曲刚度的首次准确测量。通过分析其形状的热驱动波动,我们估计七个未标记的微管和紫杉醇稳定的微管的平均挠曲刚度为2.2 x 10(-23)Nm2(不确定性为6.4%)和2.1 x 10(-23)Nm2 (不确定性为4.7%)八个罗丹明标记的微管。这些值类似于通过鞭毛运动建模获得的微管弯曲刚度的早期,较不精确的估计。对七种若丹明-鬼笔环肽标记的肌动蛋白丝进行的类似分析得出的弯曲刚度为7.3 x 10(-26)Nm2(不确定性为6%),与先前报道的结果一致。这些微管的挠曲刚度对应于5,200微米的持久长度,表明微管在细胞尺寸上是刚性的。相比之下,肌动蛋白丝的持久长度只有大约17.7微米,这也许可以解释为什么细胞内的肌动蛋白丝通常会交联成束。与肌动蛋白丝相比,微管的抗弯刚度更高,这主要是由于前者的横截面更大。如果微管蛋白是均质且各向同性的,则微管的杨氏模量将约为1.2 GPa,类似于有机玻璃和硬质塑料。预计微管几乎是不可伸展的:细胞的顺应性主要是由于细丝在细丝之间弯曲或滑动而不是细丝本身的拉伸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号