首页> 美国卫生研究院文献>Frontiers in Microbiology >Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer
【2h】

Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

机译:铁的生物矿化反映了硝酸盐依赖性铁(II)-氧化剂中的个体代谢活性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples.
机译:微生物生物矿化有时会导致周质结壳,这预计会增强化石记录中微生物的保存。然而,由于渗透率的损失阻止了养分和废物通过细胞壁的迁移,周质内的矿物质沉淀被认为会导致死亡。然而,这一假设从未被研究到单个细胞水平。在这里,我们培养了硝酸盐还原Fe(II)氧化细菌Acidovorax sp。以前已显示出BoFeN1菌株能够促进包裹在周质中的多种Fe矿物质(硅铁矿,针铁矿,磷酸铁矿)的沉淀。我们使用电子显微镜和纳米二次离子质谱技术的组合,在单细胞水平上研究了铁生物矿化与碳同化的关系。我们的分析表明,Fe生物矿化具有很强的个体异质性。值得注意的是,即使在生物矿化的晚期阶段,仍然保留着一小部分没有沉淀的细胞。使用带有 13 C-乙酸盐的脉冲追逐实验,我们提供了碳同化的个体表型异质性的证据,该异质性与铁的生物矿化水平相关。非包壳的和中等包壳的细胞能够吸收乙酸盐,而更高的周质包壳阻止了碳的掺入。碳的同化仅取决于铁壳的含量,而不取决于细胞壁中沉淀的铁矿物的性质。碳同化随着细胞相关铁含量的增加呈指数下降。一小部分未矿化和具有代谢活性的细胞的持久性可能构成高度铁质环境中的生存策略。最终,我们的研究结果表明,周质铁生物矿化可能提供个体代谢状态的特征,可以在化石记录和现代环境样品中寻找。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号