首页> 美国卫生研究院文献>Frontiers in Microbiology >The transcriptional response of microbial communities in thawing Alaskan permafrost soils
【2h】

The transcriptional response of microbial communities in thawing Alaskan permafrost soils

机译:融化阿拉斯加多年冻土中微生物群落的转录反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
机译:预计永久冻土的融化将促进微生物的分解和固碳的呼吸。反过来,这可能会增加大气中二氧化碳和甲烷等温室气体的浓度,并为气候变暖创造积极的反馈。最近的宏基因组学研究表明,多年冻土具有很大的代谢潜力,可用于碳处理,包括发酵和甲烷生成的途径。在这里,我们使用反转录信使RNA的超高通量Illumina HiSeq测序进行了一项先导研究,以获取在北极阿拉斯加潮湿酸性冻原地区长达70厘米深的多年冻土中活性代谢途径和负责任生物的详细概述。在冻融11天之前和之后,比较了多年冻土微生物群落的转录反应。通常,在冷冻条件下的转录谱表明应激反应,生存策略和维持过程占主导地位,而融化后观察到对分解土壤有机物(SOM)的快速酶促反应。拟杆菌,硬毛虫,子囊真菌和产甲烷菌是融化后最大的转录反应。在融化后的永久冻土表中,主要发现了利用乙酸盐,甲醇和甲胺的异养甲烷生成途径的转录本。此外,与乙酰化作用有关的转录本仅在融化后表达,这表明在刚解冻的永冻土中,产乙酸细菌是乙酸破译产甲烷作用的潜在乙酸盐来源。在这里,超转录组学是推断多年冻土微生物活性的一种有用方法,它有可能增进我们对多年冻土融化后SOM生物利用度和生物地球化学机制的理解,而这些作用会导致温室气体的排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号