首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Causally Investigating Cortical Dynamics and Signal Processing by Targeting Natural System Attractors With Precisely Timed (Electrical) Stimulation
【2h】

Causally Investigating Cortical Dynamics and Signal Processing by Targeting Natural System Attractors With Precisely Timed (Electrical) Stimulation

机译:针对性地研究皮层动力学和信号处理,其目标是针对具有精确定时(电)刺激的自然系统吸引者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrical stimulation is a promising tool for interacting with neuronal dynamics to identify neural mechanisms that underlie cognitive function. Since effects of a single short stimulation pulse typically vary greatly and depend on the current network state, many experimental paradigms have rather resorted to continuous or periodic stimulation in order to establish and maintain a desired effect. However, such an approach explicitly leads to forced and “unnatural” brain activity. Further, continuous stimulation can make it hard to parse the recorded activity and separate neural signal from stimulation artifacts. In this study we propose an alternate strategy: by monitoring a system in realtime, we use the existing preferred states or attractors of the network and apply short and precise pulses in order to switch between those states. When pushed into one of its attractors, one can use the natural tendency of the system to remain in such a state to prolong the effect of a stimulation pulse, opening a larger window of opportunity to observe the consequences on cognitive processing. To elaborate on this idea, we consider flexible information routing in the visual cortex as a prototypical example. When processing a stimulus, neural populations in the visual cortex have been found to engage in synchronized gamma activity. In this context, selective signal routing is achieved by changing the relative phase between oscillatory activity in sending and receiving populations (communication through coherence, CTC). In order to explore how perturbations interact with CTC, we investigate a network of interneuronal gamma (ING) oscillators composed of integrate-and-fire neurons exhibiting similar synchronization and signal routing phenomena. We develop a closed-loop stimulation paradigm based on the phase-response characteristics of the network and demonstrate its ability to establish desired synchronization states. By measuring information content throughout the model, we evaluate the effect of signal contamination caused by the stimulation in relation to the magnitude of the injected pulses and intrinsic noise in the system. Finally, we demonstrate that, up to a critical noise level, precisely timed perturbations can be used to artificially induce the effect of attention by selectively routing visual signals to higher cortical areas.
机译:电刺激是与神经元动力学相互作用以识别构成认知功能基础的神经机制的有前途的工具。由于单个短刺激脉冲的影响通常会发生很大变化,并且取决于当前的网络状态,因此许多实验范式已经采取了连续或周期性刺激的方式来建立并保持所需的效果。但是,这种方法明显导致强迫和“不自然”的大脑活动。此外,连续刺激可能使得难以解析记录的活动并将神经信号与刺激伪影分离。在这项研究中,我们提出了一种替代策略:通过实时监控系统,我们使用网络的现有首选状态或吸引子,并施加短而精确的脉冲,以便在这些状态之间进行切换。当被推入其吸引子之一时,人们可以利用系统的自然趋势来保持这种状态,以延长刺激脉冲的作用,从而打开更大的机会来观察对认知过程的后果。为了详细说明这一想法,我们将视觉皮层中的灵活信息路由作为一个典型示例。在处理刺激时,已发现视觉皮层中的神经种群参与了同步的伽马活动。在这种情况下,通过改变发送和接收总体中的振荡活动之间的相对相位(通过相干通信,CTC)来实现选择性信号路由。为了探究扰动如何与CTC相互作用,我们研究了由神经元间伽马(ING)振荡器组成的网络,该振荡器由表现出相似同步和信号路由现象的“积分并发射”神经元组成。我们基于网络的相位响应特性开发了一个闭环激励范例,并证明了其建立所需同步状态的能力。通过测量整个模型中的信息内容,我们评估了由激励引起的信号污染与注入脉冲的幅度和系统中固有噪声的关系。最后,我们证明,在达到临界噪声水平时,可以通过将视觉信号选择性地路由到较高的皮质区域来使用精确定时的扰动来人工诱发注意力的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号