首页> 美国卫生研究院文献>Frontiers in Cellular Neuroscience >Shift and Mean Algorithm for Functional Imaging with High Spatio-Temporal Resolution
【2h】

Shift and Mean Algorithm for Functional Imaging with High Spatio-Temporal Resolution

机译:高时空分辨率功能成像的平移和均值算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Understanding neuronal physiology requires to record electrical activity in many small and remote compartments such as dendrites, axon or dendritic spines. To do so, electrophysiology has long been the tool of choice, as it allows recording very subtle and fast changes in electrical activity. However, electrophysiological measurements are mostly limited to large neuronal compartments such as the neuronal soma. To overcome these limitations, optical methods have been developed, allowing the monitoring of changes in fluorescence of fluorescent reporter dyes inserted into the neuron, with a spatial resolution theoretically only limited by the dye wavelength and optical devices. However, the temporal and spatial resolutive power of functional fluorescence imaging of live neurons is often limited by a necessary trade-off between image resolution, signal to noise ratio (SNR) and speed of acquisition. Here, I propose to use a Super-Resolution Shift and Mean (S&M) algorithm previously used in image computing to improve the SNR, time sampling and spatial resolution of acquired fluorescent signals. I demonstrate the benefits of this methodology using two examples: voltage imaging of action potentials (APs) in soma and dendrites of CA3 pyramidal cells and calcium imaging in the dendritic shaft and spines of CA3 pyramidal cells. I show that this algorithm allows the recording of a broad area at low speed in order to achieve a high SNR, and then pick the signal in any small compartment and resample it at high speed. This method allows preserving both the SNR and the temporal resolution of the signal, while acquiring the original images at high spatial resolution.
机译:了解神经元生理学要求记录许多小而遥远的隔室中的电活动,例如树突,轴突或树突棘。为此,电生理学长期以来一直是选择的工具,因为它可以记录电活动的非常细微而快速的变化。但是,电生理学测量大多限于大型神经元区室,例如神经元躯体。为了克服这些限制,已经开发了光学方法,其允许监测插入神经元中的荧光报告染料的荧光变化,其空间分辨率理论上仅受染料波长和光学装置限制。然而,活神经元的功能性荧光成像的时间和空间分辨能力通常受到图像分辨率,信噪比(SNR)和采集速度之间必要折衷的限制。在这里,我建议使用以前在图像计算中使用的超分辨率平移和均值(S&M)算法,以提高获取的荧光信号的SNR,时间采样和空间分辨率。我用两个例子证明了这种方法的好处:在CA3锥体细胞的体细胞和树突中对动作电位(AP)进行电压成像,以及在CA3锥体细胞的树突轴和棘中进行钙成像。我展示了该算法允许以低速记录大范围的区域以获得高SNR,然后在任何小隔间中拾取信号并以高速对其进行重新采样。该方法可以保留信号的SNR和时间分辨率,同时以高空间分辨率获取原始图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号