class='head no_bottom_margin' id='sec1title'>Int'/> Daughter Cell Identity Emerges from the Interplay of Cdc42 Septins and Exocytosis
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Daughter Cell Identity Emerges from the Interplay of Cdc42 Septins and Exocytosis
【2h】

Daughter Cell Identity Emerges from the Interplay of Cdc42 Septins and Exocytosis

机译:子细胞身份来自Cdc42Septins和胞吐作用的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAsymmetric cell division plays a key role in differential inheritance of cell fate determinants and segregation of damaged material to one daughter cell (). Budding yeast, in which mother and daughter possess distinct developmental programs and replicative life spans, provides an important model system to study molecular mechanisms of cell fate differentiation. To prevent intermixing of material between cells sharing contiguous membranes, diffusion barriers, recently associated with septin cytoskeleton (), are required. Septins are conserved GTP-binding proteins that form hetero-oligomeric complexes capable of assembling into higher-order structures, such as filaments, rings, and gauzes (). They play important roles in diverse cellular functions and human diseases, including polarized cell growth, cytokinesis, mitosis, cell migration, bacterial infection, cancer, and neurodegenerative diseases (). Diffusion barriers based on polymeric septin rings are found not only at the division site of fungal cells but also at the base of primary cilia, dendritic spines, and in the annuli of sperm tails (). However, the mechanisms underlying septin ring biogenesis remain unknown in any system.In budding yeast, five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) form rod-shaped hetero-oligomeric complexes, which polymerize into filaments that further organize into a ring structure at the presumptive bud site (PBS) (). Upon bud emergence, the septin ring matures into a collar that is localized at the narrow neck between mother and daughter. Recently, using polarized fluorescence microscopy and cryo-electron tomography, much progress has been made in understanding the ultrastructure of the septin ring and collar (). Despite careful description of septin accumulation at the PBS () and the demonstration of the essential role of Cdc42 in this process (), the precise molecular mechanisms that control septin ring formation, its position and size, remain poorly understood. Thus, it is still unclear what makes the accumulating septin polymers form a ring ().Here, we demonstrate that septin ring formation is equivalent to the emergence of a qualitatively distinct membrane domain that is destined to become a daughter cell. We discover a crucial role of exocytosis in shaping septins into a ring and demonstrate that interlinked feedback loops between Cdc42 activity, septins, and exocytosis are essential for this process. We develop a whole-cell systems biology model that integrates the formation of the Cdc42 cluster, recruitment of septins, and exocytosis to explain the simultaneous emergence of the septin ring and the nascent bud as a single morphogenetic event that differentiates daughter from mother long before cytokinesis separates them irreversibly.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介不对称细胞分裂在细胞命运决定因素的差异遗传和受损的分离中起着关键作用一个子单元的材料()。母亲和女儿拥有独特的发育程序和复制寿命的萌芽酵母为研究细胞命运分化的分子机制提供了重要的模型系统。为防止材料在共享连续膜的细胞之间混合,最近需要与Septin细胞骨架()相关的扩散屏障。 Septins是保守的GTP结合蛋白,可形成能够组装成更高阶结构(如细丝,环和纱网)的杂合寡聚复合物。它们在多种细胞功能和人类疾病中发挥重要作用,包括极化细胞生长,胞质分裂,有丝分裂,细胞迁移,细菌感染,癌症和神经退行性疾病()。基于聚合的Septin环的扩散屏障不仅存在于真菌细胞的分裂部位,而且还存在于初级纤毛,树突棘的底部以及精子尾巴的环中()。然而,在任何系统中,Septin环生物发生的基础机制仍然未知。在发芽的酵母中,五个有丝分裂Septins(Cdc3,Cdc10,Cdc11,Cdc12和Shs1)形成杆状异寡聚复合物,这些复合物聚合成细丝,这些细丝进一步组织为推定芽部位(PBS)的环状结构()。芽出芽后,隔环就成熟为一个位于母女之间狭窄颈部的项圈。最近,使用偏振荧光显微镜和冷冻电子断层扫描技术,在了解Septin环和颈圈的超微结构方面已取得了很大进展。尽管仔细地描述了septin在PBS处的蓄积()和Cdc42在该过程中的重要作用()的证明,但对控制septin环形成,其位置和大小的精确分子机制仍然知之甚少。因此,尚不清楚是什么使积聚的septin聚合物形成环()。在此,我们证明septin环的形成与定性成为子细胞的质上不同的膜结构域的出现等效。我们发现胞吐作用在将Septin塑造成环的过程中发挥了关键作用,并证明了Cdc42活性,Septin和胞吐作用之间的相互联系的反馈回路对于此过程至关重要。我们开发了一个完整的细胞系统生物学模型,该模型整合了Cdc42簇的形成,septin募集和胞吐作用,以解释septin环和新生芽的同时出现,将其作为单个形态发生事件,使女儿与母亲在胞质分裂前很久就有所区别将它们不可逆地分开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号