首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency
【2h】

Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency

机译:线粒体Cri的形状决定了呼吸链超复合体的组装和呼吸效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMitochondria are key organelles in intermediate cellular metabolism, energy conversion, and calcium homeostasis (). They also integrate and amplify apoptosis induced by intrinsic stimuli, releasing cytochrome c and other proapoptotic factors required for the activation of caspases (). Cytochrome c release is regulated by proteins of the BCL-2 family that control the permeabilization of the outer membrane (OMM) ().Energy conversion occurs at the inner mitochondrial membrane (IMM) that can be further divided into two subcompartments: the so-called “boundary membrane” and the cristae, separated from the former by narrow tubular junctions (). The cristae shape is dynamic: upon activation of mitochondrial respiration, “orthodox” mitochondria become “condensed,” with an expanded cristae space (). During apoptosis, the curvature of the cristae membrane is inverted in a remodeling process required for the complete release of cytochrome c, normally confined in the cristae (). Cristae remodeling occurs in response to proapoptotic BH3-only BCL-2 family members, such as BID, BIM-S, and BNIP3, and independently of the outer membrane multidomain BCL-2 family members BAX and BAK (). Whether changes in morphology of the cristae, where respiratory chain complexes (RCCs) mainly localize (), affect oxidative phosphorylation efficiency, as originally predicted (), is unclear. This issue is further complicated by the assembly of RCC in supercomplexes (RCS) (), quaternary supramolecular structures that, by channeling electrons among individual RCCs, allow the selective use of RCC subsets for nicotine adenine dinucleotide (NADH)- or flavin adenine dinucleotide-derived electrons (). Such a supramolecular organization is common in cristae: also, the mitochondrial ATP synthase is assembled into dimers with greater adenosine triphosphatase (ATPase) activity (). Interestingly, cristae shape and ATPase dimers are linked: in yeast mutants where the ATPase cannot dimerize, cristae are disorganized (), whereas in mammalian cells, increased cristae density favors ATPase dimerization during autophagy (). On the contrary, despite their importance in mitochondrial bioenergetics, the relationship between RCS and cristae shape remains unclear.Mitochondrial morphology and ultrastructure depends on “mitochondria-shaping” proteins that regulate organellar fusion and fission (href="#bib23" rid="bib23" class=" bibr popnode">Griparic and van der Bliek, 2001). Mitofusins (MFN) 1 and 2, highly homologous dynamin-related proteins of the OMM, orchestrate fusion (href="#bib33" rid="bib33 bib27 bib6 bib34" class=" bibr popnode">Santel and Fuller, 2001; Legros et al., 2002; Chen et al., 2003; Santel et al., 2003). MFN1 primarily participates in fusion, cooperating with the IMM dynamin-related protein optic atrophy 1 (OPA1) (href="#bib10" rid="bib10" class=" bibr popnode">Cipolat et al., 2004), whereas MFN2 also tethers mitochondria to the endoplasmic reticulum (href="#bib15" rid="bib15" class=" bibr popnode">de Brito and Scorrano, 2008). Mitochondrial fission is regulated by the cytoplasmic dynamin-related protein 1 that, upon calcineurin-dependent dephosphorylation, translocates to mitochondria (href="#bib46" rid="bib46 bib37 bib5" class=" bibr popnode">Yoon et al., 2001; Smirnova et al., 2001; Cereghetti et al., 2008). Genetic depletion of OPA1 leads to disorganization of the cristae (href="#bib19" rid="bib19" class=" bibr popnode">Frezza et al., 2006), and oligomers that contain a soluble and a membrane-bound form of OPA1 keep the cristae junctions tight, independently from OPA1 role in fusion (href="#bib19" rid="bib19 bib11" class=" bibr popnode">Frezza et al., 2006; Cipolat et al., 2006). During apoptosis, these oligomers are early targets of BID, BIM-S, and BNIP3, as well as of intrinsic death stimuli (href="#bib19" rid="bib19 bib45 bib25 bib12" class=" bibr popnode">Frezza et al., 2006; Yamaguchi et al., 2008; Landes et al., 2010; Costa et al., 2010). Whereas our knowledge of the molecular determinants of cristae shape and their role in apoptosis is increasing, the relationship between cristae morphology and mitochondrial function remains unexplored. We therefore set out to genetically dissect whether and how cristae shape regulates mitochondrial respiration. We show that cristae morphology determines assembly and stability of RCS and hence optimal mitochondrial respiratory function during life and death of the cell.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介线粒体是中间细胞代谢,能量转换和钙稳态的关键细胞器。它们还整合和放大内在刺激诱导的凋亡,释放细胞色素c和其他激活半胱氨酸蛋白酶的促凋亡因子。细胞色素c的释放受BCL-2家族蛋白的调控,该蛋白控制外膜(OMM)的透化作用。能量转换发生在线粒体内膜(IMM)上,该线粒可进一步分为两个子部分:被称为“边界膜”和ista,通过狭窄的管状连接点与前ista隔开。 ista的形状是动态的:线粒体呼吸激活后,“正统”线粒体“凝结”,”的空间扩大()。在细胞凋亡过程中,cr膜的曲率在通常完全限制在the中的细胞色素c完全释放所需的重塑过程中被反转。响应于促凋亡的仅BH3的BCL-2家族成员(例如BID,BIM-S和BNIP3),并独立于外膜多结构域BCL-2家族成员BAX和BAK,发生骨重塑。如最初所预测的那样,呼吸链复合体(RCC)主要位于的ista的形态变化是否会影响氧化磷酸化效率,这一点尚不清楚。 RCC在超复合物(RCS)()的四级超分子结构中的组装使该问题进一步复杂化,该结构通过在各个RCC中引导电子,从而可以选择性地将RCC子集用于尼古丁腺嘌呤二核苷酸(NADH)或黄素腺嘌呤二核苷酸-派生电子()。这样的超分子组织在cr中很常见:而且,线粒体ATP合酶被组装成具有更高腺苷三磷酸酶(ATPase)活性的二聚体。有趣的是,cr的形状和ATPase二聚体是相互联系的:在ATPase无法二聚的酵母突变体中,cr的杂乱无章(),而在哺乳动物细胞中,cr的密度增加有利于自噬过程中ATPase的二聚化。相反,尽管它们在线粒体生物能学中很重要,但RCS与and形状之间的关系仍然不清楚。线粒体的形态和超微结构取决于调节细胞融合和裂变的“线粒体成形”蛋白(href =“#bib23” rid = “ bib23” class =“ bibr popnode”> Griparic和van der Bliek,2001 )。丝裂霉素(MFN)1和2,与OMM的高度同源的,与动力蛋白有关的蛋白,精心策划融合(href="#bib33" rid="bib33 bib27 bib6 bib34" class=" bibr popnode"> Santel和Fuller,2001; Legros等,2002; Chen等,2003; Santel等,2003 )。 MFN1主要参与融合,与IMM动力相关的蛋白视神经萎缩1(OPA1)合作(href="#bib10" rid="bib10" class=" bibr popnode"> Cipolat等,2004 ),而MFN2还将线粒体束缚在内质网上(href="#bib15" rid="bib15" class=" bibr popnode"> de Brito和Scorrano,2008 )。线粒体裂变受胞浆动力蛋白相关蛋白1调节,该蛋白在钙调神经磷酸酶依赖性去磷酸化后易位至线粒体(href="#bib46" rid="bib46 bib37 bib37 bib5" class=" bibr popnode"> Yoon等。)。 ,2001; Smirnova等,2001; Cereghetti等,2008 。 OPA1的遗传耗竭会导致cr的混乱(href="#bib19" rid="bib19" class=" bibr popnode"> Frezza等人,2006 ),并且寡聚物含有可溶的与OPA1在融合中的作用无关,膜结合形式的OPA1保持the连接紧密(href="#bib19" rid="bib19 bib11" class=" bibr popnode"> Frezza等人,2006; Cipolat等人等,2006 )。在凋亡过程中,这些寡聚物是BID,BIM-S和BNIP3以及内在死亡刺激的早期靶标(href="#bib19" rid="bib19 bib45 bib25 bib12" class=" bibr popnode"> Frezza等人,2006;山口等人,2008;兰德斯等人,2010;科斯塔等人,2010 )。尽管我们对cr形的分子决定因素及其在细胞凋亡中的作用的了解越来越多,但cr形貌与线粒体功能之间的关系尚待探索。因此,我们着手从基因上剖析cr形状是否以及如何调控线粒体呼吸。我们显示cr形态决定了RCS的组装和稳定性,因此决定了细胞的生死过程中最佳的线粒体呼吸功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号