首页> 美国卫生研究院文献>Elsevier Sponsored Documents >A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains
【2h】

A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains

机译:双向电路开关重新路由男性和女性大脑中的信息素信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMany species exhibit sexually dimorphic behaviors, typically as part of their reproductive repertoire. These behaviors, which often have a substantial unlearned component, provide highly tractable paradigms to explore the genetic and neural circuit basis of behavior (). As potent releasers of specific dimorphic behavior, sex pheromones are particularly experimentally advantageous (). Nevertheless, even here the neural mechanisms underlying differential processing within the brain remain largely unknown ().Several models have been proposed for how pheromones can elicit different behavior in males and females. One model is exemplified by classic work on the attraction of male silkmoths to bombykol (). Here, one sex expresses a pheromone receptor, while the other is blind to this cue. However, this peripheral change cannot account for situations in which a common stimulus produces behavior in both sexes. These are likely due to circuit differences within the brain. For instance, in mice, only males show courtship behavior toward females, but after ablation of the vomeronasal organ females show female-directed courtship (). This leads to a second model in which both sexes can express male behaviors, but these are normally repressed in females by sex-specific circuits downstream of pheromone detection. However, these circuit differences remain unknown, because the relevant receptors and downstream pathways have yet to be identified.A simpler paradigm is offered by analogous results in flies and mice, in which a monomolecular pheromone can activate identified sensory neurons in both sexes (). In the mouse, the male pheromone ESP1 activates V2Rp5 sensory neurons in both sexes but produces distinct patterns of immediate-early gene expression in deeper brain nuclei (). ESP1 triggers lordosis in females, but no effect on male behavior has been reported.In Drosophila, the male pheromone 11-cis-vaccenyl acetate (cVA) stimulates courtship in females but decreases courtship and increases aggression in males (). Because both first- and second-order olfactory neurons show similar cVA responses in males and females (), it is likely that some circuit difference deeper in the brain results in sex-specific behavioral output. Two further studies have characterized downstream elements of this pathway. used an elegant tracing approach based on sequential photoactivation of green fluorescent protein to identify candidate third- and fourth-order neurons, some of which were shown to be cVA responsive in males. However, they were unable to characterize these neurons anatomically or functionally in females, so the presence or nature of any circuit dimorphism remained unclear. In a parallel study, used a genetic mosaic technique to carry out an exhaustive analysis of sexually dimorphic neurons in male and female brains. In the olfactory system they found two groups of third-order neurons, present in both sexes, that appeared to be differentially connected, suggesting a precise circuit hypothesis for differential pheromone processing in male and female brains (A).class="figpopup" href="/pmc/articles/PMC3898676/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Sex-Specific Pheromone Responses in fru+ LHNs(A and B) Abstract circuit model for sexually dimorphic behavior (A), and circuit model for cVA processing in females and males (B).(C) Targeted in vivo whole-cell recording setup, with odor delivery and photoionization detector (PID). A dye-filled neuron is shown.(D–F) Z projections of female and male neuroblast clones on a reference brain; the ventral lateral horn is marked with a white circle. Insets show spatial relationship between LHN dendrites and DA1 PN axon terminals (ochre). Cell numbers for cluster aSP-f: 23.2 ± 2.6 in males versus 18.6 ± 5.0 in females; aSP-g: 13.4 ± 0.89 versus 13.4 ± 4.97; aSP-h: 5.0 ± 0.8 versus 5.0 ± 0.5.(G–I) Single aSP-f, aSP-g, and aSP-h LHNs filled during patch-clamp recording and traced (magenta or green lines) compared with volume-rendered DA1 PNs (pale magenta or pale green).(J–L) Physiological data for aSP-f, aSP-g, and aSP-h LHNs. These three panels are arranged in a 3-row × 2-column grid. The top row shows averaged current clamp recordings for each LHN shown in (G), (H), and (I) (cell 1). Row 2 shows raster plots for the same neurons. Row 3 shows raster plots for an additional neuron (cell 2).(M–O) Summary of cVA responses. Each dot is one neuron, colored red for significant cVA responses (adjusted p < 0.01, see the href="#sec4" rid="sec4" class=" sec">Experimental Procedures); nonsignificant responses are black. Response counts: aSP-f: 1/34 female and 20/37 male neurons; aSP-g: 11/15 female and 1/17 male neurons; aSP-h: 2/8 female and 12/14 male.See href="#mmc1" rid="mmc1" class=" supplementary-material">Table S1C for statistics. Scale bars, 25 μm. Pale red bars in (J)–(L) mark 500 ms odor presentation. See the href="#sec4" rid="sec4" class=" sec">Experimental Procedures for odorant abbreviations and href="/pmc/articles/PMC3898676/figure/figs1/" target="figure" class="fig-table-link figpopup" rid-figpopup="figs1" rid-ob="ob-figs1" co-legend-rid="lgnd_figs1">Figure S1 for additional data.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介许多物种都表现出两性性行为,通常是其生殖功能的一部分。这些行为通常具有大量未经学习的成分,它们为探索行为的遗传和神经回路基础提供了高度易处理的范例()。作为特定双态行为的有效释放剂,性信息素在实验上特别有利()。然而,即使在这里,大脑内部差异处理的神经机制仍然很大程度上未知()。关于信息素如何引起男性和女性不同行为的几种模型已经被提出。关于雄性蛾类对bombykol()的吸引作用的经典著作就是一个模型。在这里,一种性别表达一种信息素受体,而另一种则对此信息视而不见。但是,这种外围变化无法说明共同刺激会导致两性行为的情况。这些可能是由于大脑内部的电路差异引起的。例如,在小鼠中,只有雄性表现出对雌性的求爱行为,但是在消融了经鼻窦器官后,雌性表现出了女性主导的求爱行为()。这导致了第二种模型,其中两种性别都可以表达男性行为,但是这些信息通常在女性中被信息素检测下游的性别特异性回路所抑制。然而,由于尚未确定相关的受体和下游途径,因此这些电路差异仍然未知。在果蝇和小鼠中类似的结果提供了更简单的范例,其中单分子信息素可以激活两性中已识别的感觉神经元。在小鼠中,雄性信息素ESP1激活了两性中的V2Rp5感觉神经元,但在更深的脑核中产生了不同的即刻早期基因表达模式。 ESP1引发雌性弧菌病,但尚未报道对雄性行为有影响。在果蝇中,雄性信息素11-顺式-乙酸乙烯酯(cVA)刺激雌性求爱,但减少雄心求爱并增加雄性的侵略性()。由于一阶和二阶嗅觉神经元在雄性和雌性中均表现出相似的cVA反应(),很可能大脑深处的某些回路差异会导致特定性别的行为输出。两项进一步的研究已经表征了该途径的下游元素。基于绿色荧光蛋白的连续光激活,使用了一种优雅的追踪方法来识别候选的三阶和四阶神经元,其中一些被证明对雄性cVA有反应。但是,它们无法在女性中解剖或功能上表征这些神经元,因此尚不清楚任何电路二态性的存在或性质。在一项平行研究中,使用遗传镶嵌技术对男性和女性大脑中的性双态神经元进行了详尽的分析。在嗅觉系统中,他们发现两组男女存在的三阶神经元似乎相互连接在一起,这暗示了男性和女性大脑中不同信息素加工的精确电路假说(A)。 -> <!-fig模式=文章f1-> class =“ figpopup” href =“ / pmc / articles / PMC3898676 / figure / fig1 /” target =“ figure” rid-figpopup = “ fig1” rid-ob =“ ob-fig1”>图1 <!-标题a7-> fru + LHNs(A和B)中的性别特异性信息素反应性两性行为的抽象电路模型(A ),以及用于雌性和雄性cVA处理的电路模型(B)。(C)以体内全细胞记录设置为目标,带有气味传递和光电离检测器(PID)。显示了一个充满染料的神经元。参考大脑上雌性和雄性成神经细胞克隆的(D–F)Z投影;腹侧角标有白色圆圈。插图显示LHN树突与DA1 PN轴突末端(och骨)之间的空间关系。簇aSP-f的细胞数:雄性23.2±2.6,雌性18.6±5.0; aSP-g:13.4±0.89对13.4±4.97; aSP-h:5.0±0.8和5.0±0.5。(G–I)在膜片钳记录期间填充了单个aSP-f,aSP-g和aSP-h LHN,并与体积渲染的图进行了对比(洋红色或绿色线) DA1 PN(淡洋红色或淡绿色)。(J–L)aSP-f,aSP-g和aSP-h LHN的生理数据。这三个面板排列成3行×2列的网格。第一行显示了(G),(H)和(I)(单元格1)中显示的每个LHN的平均电流钳位记录。第2行显示了相同神经元的栅格图。第3行显示了另一个神经元(单元2)的栅格图。(M–O)cVA响应摘要。每个点是一个神经元,红色表示明显的cVA反应(调整后的p <0.01,请参见href="#sec4" rid="sec4" class=" sec">实验程序);不重要的回应是黑色的。反应计数:aSP-f:1/34女性和20/37男性神经元; aSP-g:11/15个雌性和1/17个雄性神经元; aSP-h:2/8女,男性12/14。有关统计信息,请参见href="#mmc1" rid="mmc1" class="Supplemental-material">表S1 C。比例尺25μm。 (J)-(L)中的淡红色条形表示500 ms的气味出现。请参阅href="#sec4" rid="sec4" class=" sec">实验程序以了解加味剂的缩写和href =“ / pmc / articles / PMC3898676 / figure / figs1 /” target =请参见“图” class =“ fig-table-link figpopup” rid-figpopup =“ figs1” rid-ob =“ ob-figs1” co-legend-rid =“ lgnd_figs1”>图S1 以获得其他数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号