class='head no_bottom_margin' id='sec1title'>Int'/> Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polα/Primase/Ctf4 Complex
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polα/Primase/Ctf4 Complex
【2h】

Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polα/Primase/Ctf4 Complex

机译:DNA复制过程中无错误的DNA损伤耐受性和姊妹染色单体接近度取决于Polα/ Primase / Ctf4复合体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionFaithful DNA replication is crucial for genomic maintenance. When replication is perturbed, cells activate stress response networks that connect the detection of replication-blocking lesions with DNA damage tolerance (DDT) and repair pathways, chromatin modifications, cell-cycle control, and various other changes in cell physiology, often collectively referred to as the DNA damage response (DDR) (). Failures in these processes are implicated in the etiology of many developmental and neurological disorders and are thought to drive genome instability characteristic of cancer ().Genome duplication is carried out by the replisome machinery, initially assembled at replication origins (). Notably, replication initiation critically depends on the loading and activity of the Polymerase α (Polα)/Primase complex. This is the fundamental initiator of DNA replication in eukaryotic cells, as the replicative DNA polymerases can only elongate an existing RNA-DNA primer produced by this complex. The Primase produces short RNA fragments (about 7–12 nt long), which are subsequently subjected to limited extension by Polα. These RNA-DNA primers are then extended by the replicative polymerases Polε and Polδ ().Polα/Primase-mediated processes are not only relevant for origin-dependent replication initiation, but also for origin-independent initiation events, as is the case of lagging strand DNA synthesis, and possibly the restart of stalled forks downstream the blocking lesion under conditions of genotoxic stress (). The latter aspect is potentially crucial for efficient DDT and replication, especially in conditions in which fast replication is a requirement, such as at the early stages of development ().Two distinct modes of DDT, error-prone and error-free DDT, operate in all eukaryotic organisms (). Error-prone DDT is mediated by translesion synthesis (TLS) polymerases and largely accounts for mutagenesis. Error-free DDT uses a recombination-related mechanism known as template switching (TS), in which one newly synthesized strand serves as replication template for the other blocked nascent strand (). The choice between these DDT modes has profound consequences for genome stability, and to date, several factors have been implicated in DDT pathway choice: PCNA post-translational modifications with mono-ubiquitylation, poly-ubiquitylation, and SUMOylation (); genome architectural transitions coupled with early stages of replication (); and cell-cycle-specific changes in the abundance or regulation of key DDT factors ().Together with Polα/Primase, a number of structural proteins that tether the replicative minichromosome maintenance (MCM) helicase to the replicative polymerases are loaded at replication origins (). Ctf4 (AND-1 in mammalian cells) functions as such a replisome architectural factor, bridging the MCM helicase and two molecules of Polα/Primase (). It is of note, however, that while Polα and Primase are essential for cellular proliferation, Ctf4 is not. This indicates that even if uncoupled from the replicative helicase, Polα/Primase supports DNA synthesis. Besides its roles to maintain normal replisome architecture, Ctf4/AND-1 is also required for sister chromatid cohesion ().Increasing number of reports indicate “replication stress” at the basis of chromosomal instability, and as an important underlying factor of developmental anomalies (href="#bib18" rid="bib18 bib22" class=" bibr popnode">Halazonetis et al., 2008; Jackson and Bartek, 2009). However, the nature of the early chromosome lesions arising following such replication perturbations is largely unknown. Moreover, the connections between these replication dysfunctions and the observed chromatin structural alterations similarly triggered by mutations in cohesion factors remain elusive.Here we used budding yeast Saccharomyces cerevisiae cellular models of specific replication stress and sister chromatid cohesion defects to investigate a possible crosstalk between recombination-mediated DDT and chromatin structure/cohesion. Our results indicate that both replicative helicase-coupled re-priming and sister chromatid cohesion are important to facilitate error-free DDT by TS, but they do so via different mechanisms. The results shed light on how highly conserved replication-associated pathways crosstalk to each other and contribute to normal replication fork and chromatin structure, providing mechanistic insights into the molecular basis of human disorders caused by replication dysfunctions.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介忠实的DNA复制对于维持基因组至关重要。当复制受到干扰时,细胞会激活应激反应网络,该网络将检测复制阻滞性病变与DNA损伤耐受(DDT)和修复途径,染色质修饰,细胞周期控制以及其他各种细胞生理变化联系在一起,通常统称为作为DNA损伤反应(DDR)()。这些过程的失败与许多发育和神经系统疾病的病因有关,并被认为是驱动癌症基因组不稳定的特征()。基因组复制是由复制机制完成的,最初是在复制起点组装的。值得注意的是,复制起始关键取决于聚合酶α(Polα)/ Primase复合物的负载和活性。这是真核细胞中DNA复制的基本引发剂,因为复制性DNA聚合酶只能延长由该复合物产生的现有RNA-DNA引物。 Primase产生短的RNA片段(约7-12 nt长),随后被Polα进行有限的延伸。然后这些RNA-DNA引物被复制性聚合酶Polε和Polδ()延伸。Polα/ Primase介导的过程不仅与起点依赖性复制起始有关,而且与起点无关的起始事件也相关,例如滞后的情况。链DNA合成,并可能在遗传毒性胁迫条件下重新启动阻塞病变下游的停滞叉子()。后一个方面对于有效的DDT和复制至关重要,特别是在需要快速复制的条件下,例如在开发的早期阶段().DDT的两种不同模式,即易于出错和无错误的DDT,可以运行在所有的真核生物中。易错滴滴涕是由跨病变合成(TLS)聚合酶介导的,并在很大程度上引起了诱变。无错DDT使用与重组相关的机制,称为模板切换(TS),其中一条新合成的链用作另一条封闭的新生链()的复制模板。这些DDT模式之间的选择对基因组稳定性具有深远的影响,迄今为止,在DDT途径选择中涉及到以下几个因素:PCNA翻译后修饰(具有单泛素化,多泛素化和SUMOylation();基因组架构转变与复制的早期阶段();以及主要DDT因子的丰度或调控的细胞周期特定变化()。与Polα/ Primase一起,将复制性微染色体维持(MCM)解旋酶与复制性聚合酶束缚在一起的许多结构蛋白被加载到复制起点( )。 Ctf4(在哺乳动物细胞中为AND-1)起着这样的复制性建筑因子的作用,将MCM解旋酶和两个Polα/ Primase分子桥接起来。但是,值得注意的是,尽管Polα和Primase对于细胞增殖至关重要,但Ctf4并非必需。这表明,即使与复制解旋酶不偶联,Polα/ Primase也支持DNA合成。 Ctf4 / AND-1除了维持正常的复制体结构外,还需要姐妹染色单体凝聚力()。越来越多的报道表明,“复制压力”是染色体不稳定的基础,并且是发育异常的重要基础。 href="#bib18" rid="bib18 bib22" class=" bibr popnode"> Halazonetis等,2008; Jackson和Bartek,2009 )。然而,这种复制扰动引起的早期染色体损伤的性质在很大程度上是未知的。此外,这些复制功能障碍与观察到的内聚因子突变同样触发的染色质结构改变之间的联系仍然难以捉摸。介导的滴滴涕和染色质结构/内聚力。我们的结果表明,复制性解旋酶偶联的重新引发和姊妹染色单体内聚对于促进TS的无差错DDT都很重要,但是它们是通过不同的机制实现的。这些结果揭示了高度保守的复制相关途径之间如何相互干扰,并有助于正常的复制叉和染色质结构,从而提供了对由复制功能障碍引起的人类疾病的分子基础的机制性见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号