首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Fasting but Not Aging Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster
【2h】

Fasting but Not Aging Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

机译:空腹而不是衰老戏剧性地改变了果蝇果蝇蛋白质上的半胱氨酸残基的氧化还原状态。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionOrganisms are continually exposed to environmental challenges that dramatically alter redox processes, changing the reduction potential of redox couples as well as the production of evanescent reactive species (). These redox changes can disrupt the molecular machinery of the organism, and consequently, cells contain short-term adaptive mechanisms and a parallel capacity for activating gene expression to maintain resilience. Two important environmental challenges that involve redox changes are aging and fasting.Aging correlates with changes in redox couples, increases in reactive species, and oxidative damage (), although their relationship with the mechanisms underlying aging has proven elusive. Fasting for 12–48 hr dramatically alters metabolic processes and is protective against ischemia-reperfusion injury () and alters signaling pathways in flies (). Intermittent starvation can be particularly effective in improving health and extending lifespan, and it may mediate some of the effects of dietary restriction (DR) (). In addition, it is not clear if DR slows changes that occur during aging or instead protects against their consequences for health and mortality (). While the molecular mechanisms underlying the benefits of fasting are obscure (), redox alterations are likely to be central.To explore how aging and fasting affect redox state, we used the fruit fly Drosophila melanogaster and focused on reversible redox alterations to exposed cysteine residues. These often lack a clear structural or catalytic role and are a major, but underappreciated, component of the integrated response of the cell to redox alterations (). Cysteine residues are the most abundant cellular thiol, and in the mitochondrial matrix, the concentration is ∼20- to 30-fold greater than glutathione (GSH) (). A proportion of protein thiols are particularly reactive due to changes in pKa, accessibility and orientation wrought by the local environment (). Potential modifications to cysteine residues include disulfides, S-nitrosothiols, sulfenic acids, S-acylation, and S-thiolation, all of which can be reversed by the GSH/glutaredoxin and thioredoxin (Trx) systems (). These changes are part of the bulk redox tone, and small changes to a large number of different cysteine residues are likely to buffer the cellular redox environment to cope with changes in redox couples and reactive species (). Protein cysteine residues can also prevent local damage by sequestering reactive species (). Finally, a proportion of protein cysteine residues will undergo reversible modifications that can alter protein activity, location, or function and thereby coordinate the transmission of redox signals (). Therefore, cysteine residues are central to the cellular response to environmental challenges through the bulk redox tone or by more specific contributions to antioxidant defenses and redox signaling (). Consequently, assessing shifts in redox state as well as the identities of individual cysteine residues that change will contribute to our understanding of how organisms respond to aging and fasting (href="/pmc/articles/PMC4508341/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A).href="/pmc/articles/PMC4508341/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4508341_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC4508341/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC4508341/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Assessment of Protein Cysteine-Residue Redox State in Flies(A) Schematic showing how exposed cysteine residue can be reversibly oxidized and reduced by GSH/glutaredoxin (Grx) and Trx.(B) OxICAT methodology. Flies are rapidly frozen, and the heads and thoraces are homogenized in 100% TCA to separate solubilized protein from the exoskeleton and then diluted to 20% TCA to precipitate proteins. The protein homogenate is then reacted with the Light ICAT reagent (L-ICAT, red) to label reduced cysteine residues (Pr-SH). After reduction of reversibly oxidized cysteine residues (Pr-SX), these thiols are reacted with the heavy ICAT reagent (H-ICAT, blue). After tryptic digestion and enrichment of labeled peptides, the biotin tags are cleaved off before separation by liquid chromatography and analysis by mass spectrometry, enabling the peptide sequence and the ratio of heavy and light labeled cysteine-containing peptides to be determined simultaneously.(C) A typical chromatogram from control flies (UAS-cat/+). A cysteine peptide oxidized and reduced pair (retention time = 39 min) is highlighted.(D) Chromatograms for the heavy and light labeled peptide eluting at 39 min are shown. The percentage oxidation of that cysteine residue was determined (bar chart).(E) The peptide eluting at 39 min was identified by mass spectrometry as a component of thioredoxin reductase-1 (TrxR1). This gene encodes both a mitochondrial and a shorter cytoplasmic splice variant. The peptide could arise from either isoform but has been numbered as Cys142 from the mitochondrial isoform.See also href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介有机物不断遭受环境挑战,这些挑战极大地改变了氧化还原过程,改变了氧化还原的潜力氧化还原对以及of逝反应物种的产生()。这些氧化还原变化可以破坏生物体的分子机制,因此,细胞包含短期适应机制和激活基因表达以维持弹性的平行能力。涉及氧化还原变化的两个重要环境挑战是衰老和禁食。衰老与氧化还原对的变化,反应性物种的增加和氧化损伤()有关,尽管它们与衰老的机理之间的关系已被证明难以捉摸。空腹12-48小时会极大地改变新陈代谢过程,对缺血-再灌注损伤有保护作用(),并改变了果蝇的信号通路()。间歇性饥饿对改善健康状况和延长寿命特别有效,并且可能介导饮食限制(DR)的某些作用。此外,尚不清楚DR是否会延缓衰老期间发生的变化,或者是否可以防止其对健康和死亡率的影响()。虽然禁食的潜在分子机制尚不清楚(),但氧化还原改变可能是关键的。为探讨衰老和禁食如何影响氧化还原状态,我们使用了果蝇果蝇(Drosophila melanogaster),着眼于暴露于半胱氨酸残基的可逆氧化还原改变。这些通常缺乏明确的结构或催化作用,并且是细胞对氧化还原改变的综合反应的主要但未被充分认识的成分。半胱氨酸残基是最丰富的细胞硫醇,在线粒体基质中,其浓度比谷胱甘肽(GSH)高约20至30倍()。由于pKa,局部环境造成的可及性和方向的变化,一部分蛋白质硫醇特别具有反应性。对半胱氨酸残基的潜在修饰包括二硫化物,S-亚硝基硫醇,亚磺酸,S-酰化和S-硫代化,所有这些均可通过GSH /戊二醛和硫氧还蛋白(Trx)系统逆转。这些变化是整体氧化还原色调的一部分,对大量不同半胱氨酸残基的微小变化可能会缓冲细胞氧化还原环境,以应对氧化还原对和反应性物种的变化()。蛋白半胱氨酸残基还可以通过隔离反应性物种()来防止局部损伤。最后,一定比例的蛋白质半胱氨酸残基将经历可逆的修饰,可以改变蛋白质的活性,位置或功能,从而协调氧化还原信号的传输。因此,半胱氨酸残基通过大量的氧化还原基调或通过对抗氧化剂防御和氧化还原信号的更具体贡献而成为细胞对环境挑战的反应的中心。因此,评估氧化还原状态的变化以及变化的单个半胱氨酸残基的身份将有助于我们了解生物体如何响应衰老和禁食(href =“ / pmc / articles / PMC4508341 / figure / fig1 /”目标=“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 A)。< !-fig ft0-> <!-fig模式=文章f1-> href =“ / pmc / articles / PMC4508341 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid -ob =“ ob-fig1”> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html /tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4508341_gr1.jpg“ target =” tileshopwindow“> target =” object“ href =” / pmc / articles / PMC4508341 / figure / fig1 /?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC4508341 / figure / fig1 /“ target =”图“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“> Fi gure 1 <!-标题a7->蝇中半胱氨酸残基氧化还原状态的评估(A)示意图显示了GSH /谷胱甘肽毒素(Grx)和Trx如何可逆地氧化和还原暴露的半胱氨酸残基。 (B)OxICAT方法。苍蝇迅速冷冻,将头部和胸部在100%TCA中匀浆以从外骨骼中分离出可溶的蛋白质,然后稀释至20%TCA以沉淀蛋白质。然后将蛋白质匀浆与Light ICAT试剂(L-ICAT,红色)反应以标记还原的半胱氨酸残基(Pr-SH)。在还原可逆氧化的半胱氨酸残基(Pr-SX)之后,这些硫醇与重度ICAT试剂(H-ICAT,蓝色)反应。胰蛋白酶消化并富集标记肽后,将生物素标记物裂解,然后通过液相色谱分离和质谱分析,从而可以同时测定肽序列以及重,轻标记的含半胱氨酸的肽的比率。(C)对照蝇的典型色谱图(UAS) -cat / +)。突出显示了一个被氧化和还原的半胱氨酸肽对(保留时间= 39分钟)。(D)显示了在39分钟时洗脱的重标记和轻标记肽的色谱图。确定了该半胱氨酸残基的氧化百分率(条形图)。(E)在39分钟时洗脱的肽经质谱鉴定为硫氧还蛋白还原酶-1(TrxR1)的组分。该基因编码线粒体和较短的胞质剪接变体。该肽可能来自任何一种同工型,但已从线粒体同工型编号为Cys142。另请参见href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号