首页> 美国卫生研究院文献>Elsevier Sponsored Documents >2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size
【2h】

2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

机译:灵长类动物皮层发育的2D和3D干细胞模型可识别出特定物种的祖先行为差异这归因于大脑的大小

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe cerebral cortex is the integrative and executive center of the mammalian CNS, making up over three-quarters of the human brain (). An increase in neuronal number, and thus cerebral cortex size, is thought to provide a template for more complex neural architectures, contributing to differences in cognitive abilities between humans and other primates (, ). The developmental mechanisms that generate differences in neuronal number and diversity, and thus cerebral cortex size in humans, other primates, and mammals in general, are currently poorly understood.During embryonic development, all excitatory cortical projection neurons are generated directly or indirectly from neuroepithelial progenitor cells of the cortical ventricular zone (VZ) (). A common feature of cerebral cortex development in all mammals is that multipotent cortical progenitor cells produce multicellular clones of neurons over developmental time, generating different classes of cortical projection neurons and then glial cells in fixed temporal order (, , , ). Neuroepithelial cells are the founder progenitor cell population in the cerebral cortex, giving rise to neurogenic radial glial cells (RGCs) that generate all of the excitatory neurons of the cerebral cortex, either directly or indirectly (, ). RGCs can self-renew (proliferate), directly generate postmitotic neurons, or produce two different types of neurogenic progenitor cells: intermediate/basal progenitor cells (IPCs) and outer RGCs (oRGCs) (, , , ). Both basal progenitor cells and oRGCs can also self-renew or generate neurons, with some evidence that IPCs have limited proliferative capacity (, href="#bib36" rid="bib36" class=" bibr popnode">Rakic, 2000).Although several different processes have been proposed to contribute to increased neuronal numbers in the primate cortex (href="#bib14" rid="bib14" class=" bibr popnode">Herculano-Houzel, 2009), research has focused on two primary mechanisms: an increase in the number of founder neuroepithelial cells, driven by increased proliferation of neuroepithelial cells before entering the neurogenic period of cortical development (href="#bib9" rid="bib9" class=" bibr popnode">Florio and Huttner, 2014, href="#bib12" rid="bib12" class=" bibr popnode">Geschwind and Rakic, 2013), and an increase in the number of oRGCs, as found in primates (href="#bib13" rid="bib13" class=" bibr popnode">Hansen et al., 2010). The latter in turn amplify the output of RGCs (for a recent review, see href="#bib5" rid="bib5" class=" bibr popnode">Dehay et al., 2015). The radial unit hypothesis proposes that an increase in the number of founder neuroepithelial cells is the basis for the increase in cortical size in humans compared with other primates (href="#bib12" rid="bib12" class=" bibr popnode">Geschwind and Rakic, 2013, href="#bib36" rid="bib36" class=" bibr popnode">Rakic, 2000). The identification of oRGCs in primates and other mammals has led to a modification of the radial unit hypothesis to suggest that the addition of oRGCs effectively increases the progenitor population and thus is a major contributor to primate cortical expansion (href="#bib8" rid="bib8" class=" bibr popnode">Fietz et al., 2010, href="#bib13" rid="bib13" class=" bibr popnode">Hansen et al., 2010, href="#bib39" rid="bib39" class=" bibr popnode">Smart et al., 2002).Current models for the cellular mechanisms that generate the increased numbers of neurons found in the primate cerebral cortex rely on extrapolating from a large body of work on rodent, primarily mouse, cortical neurogenesis. However, the cortex of humans and other primates appears to follow different scaling rules than that of other mammals, including mouse, in terms of the relationship between cortical volume and cell number and overall body size (href="#bib1" rid="bib1" class=" bibr popnode">Azevedo et al., 2009). We and others have developed human stem cell systems to study cerebral cortex neurogenesis in vitro (href="#bib7" rid="bib7" class=" bibr popnode">Espuny-Camacho et al., 2013, href="#bib25" rid="bib25" class=" bibr popnode">Mariani et al., 2012, href="#bib37" rid="bib37" class=" bibr popnode">Shi et al., 2012a), finding that directed differentiation of human pluripotent stem cells (PSCs) to cerebral cortex progenitor cells robustly replays the temporal order of cortical neurogenesis, including the production of the diversity of progenitor cell types found in vivo (href="#bib37" rid="bib37" class=" bibr popnode">Shi et al., 2012a).In this study, we extended the use of stem cell systems to compare human, macaque, and chimpanzee cortical neurogenesis to understand the developmental mechanisms regulating increased cortical size in different primates. We find that there are several important differences in cerebral cortex progenitor cell biology between rodents and primates, and between humans and nonhuman primates, that contribute to the marked differences in neuronal number among the different species. Together, these findings constitute multiple new insights into the biology of generating large brains in relatively slowly developing mammals, including primates.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介大脑皮层是哺乳动物中枢神经系统的整合和执行中心,占三个以上人脑的四分之一()。人们认为,神经元数量的增加,进而大脑皮层大小的增加,为更复杂的神经结构提供了模板,从而导致人类与其他灵长类动物之间认知能力的差异。目前,人们对人类,其他灵长类动物和哺乳动物的神经元数量和多样性以及大脑皮层大小产生差异的发育机制了解甚少。在胚胎发育过程中,所有兴奋性皮质投射神经元都是直接或间接从神经上皮祖细胞产生的皮质心室区(VZ)的细胞()。在所有哺乳动物中,大脑皮层发育的一个共同特征是,多能皮层祖细胞会在发育时间内产生神经元的多细胞克隆,从而产生不同类别的皮层投射神经元,然后以固定的时间顺序生成神经胶质细胞。神经上皮细胞是大脑皮层的始祖细胞群,产生了神经源性放射状神经胶质细胞(RGC),它们直接或间接产生大脑皮层的所有兴奋性神经元。 RGC可以自我更新(增殖),直接生成有丝分裂后的神经元,或产生两种不同类型的神经源性祖细胞:中/基础祖细胞(IPC)和外部RGC(oRGC)(“”,“”)。基础祖细胞和oRGC都可以自我更新或生成神经元,有证据表明IPC的增殖能力有限(,href="#bib36" rid="bib36" class=" bibr popnode"> Rakic,2000 < / a>)。尽管已经提出了几种不同的过程来促进灵长类皮层中神经元数量的增加(href="#bib14" rid="bib14" class=" bibr popnode"> Herculano-Houzel,2009年),研究的重点集中在两个主要机制上:在进入皮层发育的神经生成期之前,神经上皮细胞增殖的增加推动了原始神经上皮细胞数量的增加(href =“#bib9” rid =“ bib9 “ class =” bibr popnode“> Florio and Huttner,2014 ,href="#bib12" rid="bib12" class=" bibr popnode"> Geschwind and Rakic,2013 ),以及灵长类动物中发现的oRGC数量增加(href="#bib13" rid="bib13" class=" bibr popnode"> Hansen等人,2010 )。后者反过来又放大了RGC的输出(有关最近的评论,请参见href="#bib5" rid="bib5" class=" bibr popnode"> Dehay et al。,2015 )。径向单位假说提出,与其他灵长类动物相比,建立者上皮神经上皮细胞数量的增加是人类皮质大小增加的基础(href =“#bib12” rid =“ bib12” class =“ bibr popnode” > Geschwind and Rakic,2013 ,href="#bib36" rid="bib36" class=" bibr popnode"> Rakic,2000 )。灵长类和其他哺乳动物中oRGC的鉴定已导致the骨单位假说的修改,这表明oRGC的添加有效地增加了祖细胞的数量,因此是灵长类皮层扩张的主要因素(href =“#bib8” rid =“ bib8” class =“ bibr popnode”> Fietz等,2010 ,href="#bib13" rid="bib13" class=" bibr popnode"> Hansen等,2010 < / a>,href="#bib39" rid="bib39" class=" bibr popnode"> Smart等人,2002 )。目前发现生成增加的神经元数量的细胞机制的模型在灵长类动物大脑皮层中,依赖于对啮齿动物(主要是小鼠)的皮质神经发生的大量工作进行推断。但是,就皮质体积和细胞数量与整体大小之间的关系而言,人类和其他灵长类动物的皮质似乎遵循与其他哺乳动物(包括小鼠)不同的缩放规则(href =“#bib1” rid = “ bib1” class =“ bibr popnode”> Azevedo等人,2009 )。我们和其他人开发了人类干细胞系统,以研究体外的大脑皮层神经发生(href="#bib7" rid="bib7" class=" bibr popnode"> Espuny-Camacho et al。,2013 , href="#bib25" rid="bib25" class=" bibr popnode"> Mariani等人,2012 ,href =“#bib37” rid =“ bib37” class =“ bibr popnode” > Shi等人,2012a ),发现人类多能干细胞(PSC)向大脑皮层祖细胞的定向分化能强烈地重放皮质神经发生的时间顺序,包括所发现的祖细胞类型多样性的产生(href="#bib37" rid="bib37" class=" bibr popnode"> Shi et al。,2012a )。在这项研究中,我们扩展了干细胞系统的用途,以比较人类,猕猴和黑猩猩的皮质神经发生,以了解调节不同灵长类动物皮质大小增加的发育机制。我们发现,在啮齿动物和灵长类动物之间以及人与非人灵长类动物之间的大脑皮质祖细胞生物学中存在一些重要差异,这导致了不同物种之间神经元数量的显着差异。这些发现共同构成了在包括灵长类在内的相对较慢发展的哺乳动物中产生大大脑的生物学的多种新见解。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号