首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex
【2h】

Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex

机译:细胞质11亚基RNA外来体复合物的结构。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe eukaryotic RNA exosome is a conserved ribonuclease complex that controls the quantity and quality of a large number of RNAs. Exosome-mediated RNA degradation leads to the elimination of nuclear and cytoplasmic transcripts in turnover and quality control pathways or to partial trimming of RNA precursors in processing pathways (reviewed in , , , , , ). The core complex of the RNA exosome was originally discovered from genetic and biochemical analyses in budding yeast () and has since been characterized at the molecular and structural level (reviewed in , ). Orthologs have also been identified in other eukaryotes and have been linked to Mendelian diseases in the human population (, ).The yeast exosome core complex is formed by ten different proteins. Only a single subunit (Rrp44, also known as Dis3) is catalytically active (, ). The other nine core subunits (Exo9) form a cylindrical structure that threads RNA substrates to the Rrp44 exoribonuclease site (, , href="#bib34" rid="bib34" class=" bibr popnode">Makino et al., 2013, href="#bib56" rid="bib56" class=" bibr popnode">Wasmuth et al., 2014). Yeast Exo10 is present in the nucleus as well as in the cytoplasm but binds compartment-specific cofactors. In the nucleus, the exosome associates with an additional ribonuclease complex (Rrp6-Rrp47), an RNA helicase (Mtr4), and a small protein (Mpp6) to form a 14-subunit assembly (href="#bib8" rid="bib8" class=" bibr popnode">Butler and Mitchell, 2010, href="#bib45" rid="bib45" class=" bibr popnode">Schuch et al., 2014). In the cytoplasm, the exosome functions together with the Ski2-Ski3-Ski8-Ski8 (Ski) complex, a tetrameric assembly centered at an Mtr4-like RNA helicase (Ski2) (href="#bib3" rid="bib3" class=" bibr popnode">Anderson and Parker, 1998, href="#bib7" rid="bib7" class=" bibr popnode">Brown et al., 2000, href="#bib21" rid="bib21" class=" bibr popnode">Halbach et al., 2013). Orthologs of these exosome cofactors are well conserved in eukaryotes (href="#bib43" rid="bib43" class=" bibr popnode">Schilders et al., 2007, href="#bib8" rid="bib8" class=" bibr popnode">Butler and Mitchell, 2010, href="#bib42" rid="bib42" class=" bibr popnode">Schaeffer et al., 2011), and several are mutated in human diseases (reviewed in href="#bib17" rid="bib17" class=" bibr popnode">Fabre and Badens, 2014, href="#bib49" rid="bib49" class=" bibr popnode">Staals and Pruijn, 2010).An additional cofactor, Ski7, bridges the interaction between the exosome and Ski complexes in S. cerevisiae (href="#bib4" rid="bib4" class=" bibr popnode">Araki et al., 2001, href="#bib21" rid="bib21" class=" bibr popnode">Halbach et al., 2013, href="#bib52" rid="bib52" class=" bibr popnode">van Hoof et al., 2000, href="#bib54" rid="bib54" class=" bibr popnode">Wang et al., 2005). The N-terminal exosome-binding and Ski-binding domains of Ski7 are required for all known exosome functions in the cytoplasm, including mRNA turnover and quality-control pathways (href="#bib4" rid="bib4" class=" bibr popnode">Araki et al., 2001, href="#bib42" rid="bib42" class=" bibr popnode">Schaeffer et al., 2011, href="#bib53" rid="bib53" class=" bibr popnode">van Hoof et al., 2002. The C-terminal GTPase-like domain of Ski7 has instead a specific role in nonstop decay (NSD) (href="#bib53" rid="bib53" class=" bibr popnode">van Hoof et al., 2002). NSD is one of the quality-control pathways that monitors the process of mRNA translation: it eliminates defective transcripts where the absence of in-frame termination codons causes ribosomes to stall upon translating the 3′ poly(A) tail (reviewed in href="#bib23" rid="bib23" class=" bibr popnode">Inada, 2013, href="#bib26" rid="bib26" class=" bibr popnode">Klauer and van Hoof, 2012, href="#bib32" rid="bib32" class=" bibr popnode">Lykke-Andersen and Bennett, 2014, href="#bib47" rid="bib47" class=" bibr popnode">Shoemaker and Green, 2012). S. cerevisiae Ski7 is a paralogue of the ribosome recycling factor Hbs1. Hbs1 functions in no-go decay (NGD), another translational quality-control pathway that targets and degrades transcripts with ribosomes stalled in the coding region or in the 3′ untranslated region (href="#bib13" rid="bib13" class=" bibr popnode">Doma and Parker, 2006, href="#bib20" rid="bib20" class=" bibr popnode">Guydosh and Green, 2014; and reviewed in href="#bib23" rid="bib23" class=" bibr popnode">Inada, 2013, href="#bib32" rid="bib32" class=" bibr popnode">Lykke-Andersen and Bennett, 2014, href="#bib47" rid="bib47" class=" bibr popnode">Shoemaker and Green, 2012). Yeast Hbs1 and Dom34 have also been recently implicated in NSD (href="#bib51" rid="bib51" class=" bibr popnode">Tsuboi et al., 2012).The SKI7 and HBS1 paralogous genes originated from an ancestral genome duplication event in budding yeast (href="#bib36" rid="bib36" class=" bibr popnode">Marshall et al., 2013). The Ski7 and Hbs1 proteins comprise a similar translational GTPase-like domain (href="#bib27" rid="bib27" class=" bibr popnode">Kowalinski et al., 2015) and are expected to share similarities in recognizing stalled ribosomes (href="#bib53" rid="bib53" class=" bibr popnode">van Hoof et al., 2002). However, they diverge in their activities (GTP binding versus GTP hydrolysis), mRNA targets (nonstop versus no-go mRNAs), and interacting proteins (exosome-Ski versus Dom34). Another conspicuous difference is that Hbs1 is conserved across eukaryotes while Ski7 orthologs have only been identified in a subset of fungal species (href="#bib36" rid="bib36" class=" bibr popnode">Marshall et al., 2013). Although Ski7 is currently assumed to be a specialized protein in yeasts, several observations argue against such evolutionary restriction. First, given that the exosome and Ski complexes are conserved from yeast to human, it is reasonable to expect that a Ski7-like cofactor would bridge their interaction also in higher eukaryotes. Second, NSD is not limited to yeast but also exists in mammalian cells, where it depends on HBS1-DOM34 as well as exosome and SKI proteins (href="#bib41" rid="bib41" class=" bibr popnode">Saito et al., 2013). In this work, we set out to visualize how the yeast exosome interacts with Ski7, and based on the structural information, we identified isoform 3 of HBS1L as the human counterpart of Ski7.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介真核RNA外泌体是一种保守的核糖核酸酶复合物,可控制大分子的数量和质量。 RNA的数量。外来体介导的RNA降解导致营业额和质量控制途径中核和细胞质转录本的消除,或加工途径中RNA前体的部分修整(在,,,,,中进行了综述)。 RNA外泌体的核心复合物最初是在发芽酵母中通过遗传和生化分析发现的,此后在分子和结构水平上进行了表征(参见,)。直向同源物也已在其他真核生物中鉴定出来,并与人类的孟德尔疾病有关。酵母外泌体核心复合物是由十种不同的蛋白质形成的。只有一个亚基(Rrp44,也称为Dis3)具有催化活性(,)。其他9个核心亚基(Exo9)形成圆柱结构,将RNA底物穿入Rrp44外切核酸酶位点(,,href="#bib34" rid="bib34" class=" bibr popnode"> Makino等人,2013年,href="#bib56" rid="bib56" class=" bibr popnode"> Wasmuth et al。,2014 )。酵母Exo10存在于细胞核以及细胞质中,但与区室特异性辅因子结合。在细胞核中,外泌体与其他核糖核酸酶复合物(Rrp6-Rrp47),RNA解旋酶(Mtr4)和小蛋白质(Mpp6)结合形成14个亚基的装配体(href =“#bib8” rid = “ bib8” class =“ bibr popnode”>巴特勒和米切尔,2010 ,href="#bib45" rid="bib45" class=" bibr popnode">舒赫等人,2014 )。在细胞质中,外泌体与Ski2-Ski3-Ski8-Ski8(Ski)复合体一起发挥功能,Ski2-Ski3-Ski8-Ski8(Ski)复合体是以Mtr4样RNA解旋酶(Ski2)为中心的四聚体组装体(href =“#bib3” rid =“ bib3” class =“ bibr popnode”>安德森和帕克,1998 ,href="#bib7" rid="bib7" class=" bibr popnode"> Brown等人,2000 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode”> Halbach等人,2013 )。这些外泌体辅因子的直向同源物在真核生物中保存良好(href="#bib43" rid="bib43" class=" bibr popnode"> Schilders等,2007 ,href =“#bib8” rid =“ bib8” class =“ bibr popnode”>巴特勒和米切尔,2010 ,href="#bib42" rid="bib42" class=" bibr popnode">舍弗等人,2011 ),其中一些在人类疾病中发生了变异(已在href="#bib17" rid="bib17" class=" bibr popnode"> Fabre and Badens,2014 ,href =“# bib49“ rid =” bib49“ class =” bibr popnode“> Staals和Pruijn,2010 )。另外一个辅助因子Ski7桥接了酿酒酵母中外泌体和Ski复合物之间的相互作用(href =” #bib4“ rid =” bib4“ class =” bibr popnode“> Araki等,2001 ,href="#bib21" rid="bib21" class=" bibr popnode"> Halbach等。 ,2013 ,href="#bib52" rid="bib52" class=" bibr popnode"> van Hoof等人,2000 ,href =“#bib54” rid =“ bib54“ class =” bibr popnode“> Wang等人,2005 )。 Ski7的N末端外泌体结合域和Ski结合域是细胞质中所有已知外泌体功能所必需的,包括mRNA转换和质量控制途径(href =“#bib4” rid =“ bib4” class =“ bibr popnode“> Araki等,2001 ,href="#bib42" rid="bib42" class=" bibr popnode">舍弗等,2011 ,href = “#bib53” rid =“ bib53” class =“ bibr popnode”> van Hoof et al。,2002 。Ski7的C端GTPase样结构域在不间断衰减(NSD)中起特定作用( href="#bib53" rid="bib53" class=" bibr popnode"> van Hoof et al。,2002 )。NSD是监测mRNA翻译过程的质量控制途径之一:它消除了有缺陷的转录本,其中无框内终止密码子会导致核糖体在翻译3'poly(A)尾巴时停滞(在href="#bib23" rid="bib23" class=" bibr popnode">中进行了审查Inada,2013 ,href="#bib26" rid="bib26" class=" bibr popnode"> Klauer and van Hoof,2012 ,href =“#bib32” rid =“ bib32” class =“ bibr popnode”> Lykke-Andersen和Bennett,2014 ,href="#bib47" rid="bib47" class=" bibr popnode">鞋匠和格林,2012年< / a>)。酿酒酵母Ski7是核糖体回收因子Hbs1的旁系同源物。 Hbs1在“不进行衰变(NGD)”中起作用,NGD是另一种翻译质量控制途径,可靶向和降解转录物,其中核糖体停滞在编码区或3'非翻译区(href =“#bib13” rid =“ bib13” class =“ bibr popnode”> Doma和Parker,2006 ,href="#bib20" rid="bib20" class=" bibr popnode">圭多什和格林,2014 ;并在href="#bib23" rid="bib23" class=" bibr popnode">稻田,2013年,href="#bib32" rid="bib32" class=" bibr popnode"> Lykke-Andersen和Bennett,2014 ,href =“#bib47” rid =“ bib47” class =“ bibr popnode“>鞋匠和格林,2012年)。酵母Hbs1和Dom34最近也与NSD有关(href="#bib51" rid="bib51" class=" bibr popnode"> Tsuboi et al。,2012 )。SKI7和HBS1的同源基因源于发芽酵母中的祖先基因组复制事件(href="#bib36" rid="bib36" class=" bibr popnode"> Marshall等,2013 )。 Ski7和Hbs1蛋白包含类似的翻译GTPase样结构域(href="#bib27" rid="bib27" class=" bibr popnode"> Kowalinski et al。,2015 ),并有望共享识别停滞的核糖体的相似性(href="#bib53" rid="bib53" class=" bibr popnode"> van Hoof等,2002 )。但是,它们在活性(GTP结合与GTP水解),mRNA靶标(不间断与不通过的mRNA)和相互作用蛋白(外来体-Ski与Dom34)之间存在差异。另一个明显的区别是Hbs1在真核生物中是保守的,而Ski7直向同源物仅在一部分真菌物种中被鉴定出来(href="#bib36" rid="bib36" class=" bibr popnode"> Marshall et al。,2013 )。尽管目前认为Ski7是酵母中的一种特殊蛋白质,但一些观察结果反对这种进化限制。首先,考虑到外泌体和Ski复合物在酵母和人类之间是保守的,可以合理地预期Ski7样辅因子也会在高级真核生物中架起它们的相互作用。其次,NSD不仅限于酵母,还存在于哺乳动物细胞中,该细胞取决于HBS1-DOM34以及外泌体和SKI蛋白(href="#bib41" rid="bib41" class=" bibr popnode"> Saito等人,2013 )。在这项工作中,我们着手可视化酵母外泌体如何与Ski7相互作用,并基于结构信息,我们将HBS1L的亚型3识别为Ski7的人类对应物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号