首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis
【2h】

Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis

机译:守护神/皮层皮质病灶组装指定果蝇前后轴的非中心体微管阵列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMany differentiated animal cells and all plant cells lack functional centrosomes, yet form highly organized microtubule (MT) arrays that play essential roles in cell polarity, organization, and function (). For example, both Drosophila and rodent hippocampal neurons develop normally without active centrosomes, with the latter extending and even regenerating axons independently of centrosomal MT nucleation (, ). Most Drosophila tissues lack functional centrosomes or microtubule organizing centers (MTOCs) in interphase ().Anterior-posterior axis formation in the Drosophila oocyte provides a well-studied example of the role of noncentrosomal MTs. Although the oocyte contains centrosomes, which cluster near the nucleus, oogenesis proceeds normally in their absence (, , ). Instead, the majority of MTs grow from the anterior/lateral cortex, but not from the posterior, where the plus ends concentrate (, , , ). This noncentrosomal MT array directs the localization of bicoid and oskar mRNAs to the anterior and posterior poles of the oocyte, respectively, to define the main body axis of the embryo (, ). 3D modeling of the oocyte MT cytoskeleton has shown that restricting MT minus ends to the anterior/lateral cortex is sufficient to generate an MT network that can direct the transport of oskar mRNA to the oocyte posterior by kinesin ().The formation of this polarized MT array is under the control of the PAR proteins, which localize in mutually antagonistic anterior and posterior cortical domains (, href="#bib53" rid="bib53" class=" bibr popnode">Shulman et al., 2000). The posterior crescent of the Par-1 kinase transmits this cortical polarity to the MT cytoskeleton by excluding minus ends from the oocyte posterior. It is not known, however, how PAR-1 activity is transduced into the asymmetric organization of MT minus ends, nor how the minus ends associate with the anterior/lateral cortex.The recent discovery of the Patronin family of MT minus-end-binding proteins, consisting of Patronin in Drosophila, CAMSAP1, 2, and 3 in mammals, and PTRN-1 in worms, has begun to reveal how the minus ends of noncentrosomal MTs are organized and maintained (href="#bib1" rid="bib1" class=" bibr popnode">Akhmanova and Steinmetz, 2015, href="#bib6" rid="bib6" class=" bibr popnode">Baines et al., 2009, href="#bib22" rid="bib22" class=" bibr popnode">Goodwin and Vale, 2010, href="#bib39" rid="bib39" class=" bibr popnode">Marcette et al., 2014, href="#bib40" rid="bib40" class=" bibr popnode">Meng et al., 2008, href="#bib47" rid="bib47" class=" bibr popnode">Richardson et al., 2014). The Patronins recognize and stabilize free MT minus ends by protecting them from depolymerization (href="#bib22" rid="bib22" class=" bibr popnode">Goodwin and Vale, 2010, href="#bib24" rid="bib24" class=" bibr popnode">Hendershott and Vale, 2014, href="#bib29" rid="bib29" class=" bibr popnode">Jiang et al., 2014). Patronins appear to play a particularly important role in organizing MTs in differentiated cells. CAMSAP3 localizes to the apical domain in epithelial cells, where it is required for the formation of the apical-basal array of MTs (href="#bib59" rid="bib59" class=" bibr popnode">Tanaka et al., 2012, href="#bib61" rid="bib61" class=" bibr popnode">Toya et al., 2016, href="#bib67" rid="bib67" class=" bibr popnode">Zheng et al., 2013). CAMSAP2 stabilizes neuronal MTs in axon and dendrites, and its knockdown leads to defects in axon specification and dendritic branch formation (href="#bib66" rid="bib66" class=" bibr popnode">Yau et al., 2014). Similarly, Caenorhabditis elegans PTRN-1 is required for normal neurite morphology and axon regeneration (href="#bib14" rid="bib14" class=" bibr popnode">Chuang et al., 2014, href="#bib39" rid="bib39" class=" bibr popnode">Marcette et al., 2014, href="#bib47" rid="bib47" class=" bibr popnode">Richardson et al., 2014). The function of Drosophila Patronin has only been examined in cultured S2 cells, where its depletion leads to a decrease in MT number and an increase in free moving MTs (href="#bib22" rid="bib22" class=" bibr popnode">Goodwin and Vale, 2010).Although it is now clear that the Patronins play an important role in organizing noncentrosomal MTs in differentiated cells, little is known about the regulation of the distribution and activity of the Patronins themselves. Here we show that Patronin is recruited to the anterior/lateral cortex of the Drosophila oocyte by the spectraplakin, Shot, under the control of Par-1. These Shot/Patronin complexes form the cortical noncentrosomal MTOCs that organize the polarized MT network in the oocyte, which specifies the anterior-posterior axis.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介许多分化的动物细胞和所有植物细胞都缺乏功能性中心体,但却形成了高度有组织的微管( MT)阵列在细胞极性,组织和功能()中起着至关重要的作用。例如,果蝇和啮齿类动物海马神经元均正常发育而没有活性中心体,后者独立于中心体MT的成核而独立地延伸甚至再生轴突。大多数果蝇组织在相间缺乏功能性中心体或微管组织中心(MTOC)。果蝇卵母细胞中前后轴的形成为非中心体MT的作用提供了充分研究的实例。尽管卵母细胞含有聚集在核附近的中心体,但在卵母细胞不存在的情况下卵母细胞正常进行。取而代之的是,大多数MT都是从前/外侧皮质生长的,而不是从后部生长的,后者的正端集中在(,,,)。这种非中心体MT阵列分别将二倍体和oskar mRNA定位于卵母细胞的前极和后极,以定义胚胎的主体轴(,)。卵母细胞MT细胞骨架的3D建模显示,限制MT负向前/外侧皮质的末端足以产生MT网络,该网络可以通过驱动蛋白引导oskar mRNA向卵母细胞的后部运输()。阵列受PAR蛋白的控制,该PAR蛋白位于相互拮抗的前皮质和后皮质区域(,href="#bib53" rid="bib53" class=" bibr popnode"> Shulman et al。,2000 )。通过排除卵母细胞后部的负端,Par-1激酶的后部新月形将这一皮质极性传递给MT细胞骨架。然而,还不知道PAR-1的活性如何转导到MT负端的不对称组织中,也不知道负端如何与前/外侧皮层相关联.MT负端结合的Patronin家族的最新发现蛋白,由果蝇中的守护神蛋白,哺乳动物中的CAMSAP1、2和3以及蠕虫中的PTRN-1组成,已经开始揭示非中心体MT的负端是如何组织和维持的(href =“#bib1” rid = “ bib1” class =“ bibr popnode”> Akhmanova和Steinmetz,2015 ,href="#bib6" rid="bib6" class=" bibr popnode"> Baines et al。,2009 ,href="#bib22" rid="bib22" class=" bibr popnode"> Goodwin和Vale,2010 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode” > Marcette et al。,2014 ,href="#bib40" rid="bib40" class=" bibr popnode"> Meng et al。,2008 ,href =“#bib47 “ rid =” bib47“ class =” bibr popnode“>理查森等人,2014 )。守护神通过保护自由MT负端免于解聚来识别和稳定(href="#bib22" rid="bib22" class=" bibr popnode"> Goodwin和Vale,2010 ,href =“ #bib24“ rid =” bib24“ class =” bibr popnode“> Hendershott and Vale,2014 ,href="#bib29" rid="bib29" class=" bibr popnode"> Jiang等人, 2014 )。守护神似乎在组织分化细胞中的MT中起着特别重要的作用。 CAMSAP3定位于上皮细胞的顶端结构域,是形成MT的顶端基底阵列所必需的(href="#bib59" rid="bib59" class=" bibr popnode"> Tanaka等。 ,2012 ,href="#bib61" rid="bib61" class=" bibr popnode"> Toya等人,2016 ,href =“#bib67” rid =“ bib67 “ class =” bibr popnode“> Zheng等人,2013 )。 CAMSAP2稳定轴突和树突中的神经元MT,其敲低会导致轴突规格和树突分支形成方面的缺陷(href="#bib66" rid="bib66" class=" bibr popnode"> Yau等人,2014 < / a>)。同样,秀丽隐杆线虫PTRN-1是正常神经突形态和轴突再生所必需的(href="#bib14" rid="bib14" class=" bibr popnode"> Chuang等,2014 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode”> Marcette等人,2014 ,href="#bib47" rid="bib47" class=" bibr popnode">理查森等,2014 )。果蝇Patronin的功能仅在培养的S2细胞中进行了检查,其消耗导致MT数量减少和自由移动MT的增加(href =“#bib22” rid =“ bib22” class =“ bibr popnode “> Goodwin和Vale,2010 )。尽管现在很明显,守护神在组织分化细胞中的非中心体MT中起着重要作用,但对守护神本身的分布和活性的调控知之甚少。在这里,我们显示了光谱素Shot将Patronin募集到果蝇卵母细胞的前/外侧皮质,在参数1的控制下。这些Shot / Patronin复合物形成皮质非中心体MTOC,这些组织在卵母细胞中组织了极化的MT网络,该网络指定了前后轴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号