首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells
【2h】

Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells

机译:转化生长因子β驱动造血内皮编程和向造血干细胞的转化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionHematopoietic stem cells (HSCs) are specified during embryonic development from a subset of arterial endothelial cells located in the floor of the dorsal aorta (DA). HSCs emerge by a process termed the endothelial-to-hematopoietic transition (EHT) (, , ). In zebrafish, the hematopoietic stem and progenitor cells (HSPCs) generated by EHT migrate to the caudal hematopoietic tissue (CHT), where they proliferate and undergo differentiation into erythroid and myeloid lineages (, ). Some will exit the CHT and migrate to the thymus to give rise to T cells, and others move to the kidney, the adult site of hematopoiesis in the zebrafish, equivalent to the bone marrow in mammals ().The transcription factor Runx1 is required for EHT in mice and zebrafish (, ). Its expression in the floor of the DA is initiated by 23 hpf in zebrafish () and marks a cell population committed to the hemogenic fate, the hemogenic endothelium (HE). Several signaling pathways including Hedgehog, VEGF, Notch and BMP are required sequentially to regulate programming of the arterial endothelium and HSPC emergence (, , , ). The Notch receptor Notch1 is the main driver of HSPC emergence from HE, likely downstream of its ligand Jagged1 (, , href="#bib28" rid="bib28" class=" bibr popnode">Jang et al., 2015) and is thought to drive runx1 expression via Gata2 (href="#bib56" rid="bib56" class=" bibr popnode">Robert-Moreno et al., 2005). Jagged1 is dispensable for arterial programming but required in the endothelium for the specification of HSPCs (href="#bib17" rid="bib17" class=" bibr popnode">Espin-Palazon et al., 2014, href="#bib18" rid="bib18" class=" bibr popnode">Gama-Norton et al., 2015, href="#bib57" rid="bib57" class=" bibr popnode">Robert-Moreno et al., 2008).In humans, defective transforming growth factor β (TGFβ) signaling is associated with proliferative disorders of HSPCs such as acute myeloid leukemia and T cell acute lymphoblastic leukemia (href="#bib32" rid="bib32" class=" bibr popnode">Kim and Letterio, 2003). More recently, it has been shown that paracrine TGFβ signaling in the bone marrow niche maintains quiescence of the resident HSC pool (href="#bib68" rid="bib68" class=" bibr popnode">Zhao et al., 2014) and may also direct differentiation of lineage-biased HSC subtypes (href="#bib7" rid="bib7" class=" bibr popnode">Challen et al., 2010), positioning TGFβ as a critical regulator of proliferation and differentiation of adult HSCs. Whether TGFβ plays a role in the formation of HSCs is however not known. Mutants for the ligand TGFβ1 or its receptor TGFβR2, including endothelial-specific conditional knockout mice, die between E9.5 and E10.5 due to defective recruitment of mural cells to the yolk sac vasculature and the subsequent loss of vessel integrity (href="#bib69" rid="bib69" class=" bibr popnode">Carvalho et al., 2004, href="#bib15" rid="bib15" class=" bibr popnode">Dickson et al., 1995, href="#bib52" rid="bib52" class=" bibr popnode">Oshima et al., 1996). This is before the emergence of HSPCs in the embryo proper (href="#bib13" rid="bib13" class=" bibr popnode">de Bruijn et al., 2002), effectively precluding the analysis of the role of TGFβ signaling in HSPC specification in mice. Zebrafish, however, develop externally and do not depend on extraembryonic tissues for survival. In addition, recruitment of mural cells to the endothelium does not happen until 72 hpf (href="#bib60" rid="bib60" class=" bibr popnode">Santoro et al., 2009), 2 days after the HSPCs are specified in the DA. Thus, we can address the role of TGFβ in HSPC emergence in zebrafish without the inherent limitations of the mouse models.The TGFβ superfamily comprises BMPs, Activins, Nodals, and TGFβs. There are three TGFβ ligands in the mouse: TGFβ1, TGFβ2, and TGFβ3 (href="#bib23" rid="bib23" class=" bibr popnode">Goumans and Mummery, 2000), and they all signal through a single type II serine-threonine kinase receptor (TGFβR2) that recruits the type I receptors Activin-like kinase 1 (Alk1) or Alk5 (href="#bib61" rid="bib61" class=" bibr popnode">Shi and Massague, 2003). Alk1 expression is essentially restricted to endothelial cells (ECs) (href="#bib51" rid="bib51" class=" bibr popnode">Oh et al., 2000), whereas Alk5 is more broadly expressed (href="#bib24" rid="bib24" class=" bibr popnode">Goumans et al., 2002) but also present in ECs. Activated Alk1 phosphorylates Smad1, Smad5, and Smad9, whereas activated Alk5 phosphorylates Smad2 and Smad3 (href="#bib61" rid="bib61" class=" bibr popnode">Shi and Massague, 2003). Activated Smads migrate to the nucleus together with the co-Smad Smad4 and regulate transcription together with co-activators or co-repressors (href="#bib61" rid="bib61" class=" bibr popnode">Shi and Massague, 2003). In addition, TGFβ can signal through the non-canonical Erk, JNK, and p38 MAPK kinase pathways to instigate transcriptional responses (href="#bib14" rid="bib14" class=" bibr popnode">Derynck and Zhang, 2003). Thus, to circumvent the complexity of the intracellular signaling elicited by TGFβ, we focused our attention on TgfβR2, the type II receptor for TGFβ. Abrogation of TGFβR2 activity revealed that TGFβ signaling plays a key role in the formation of HSPCs. TGFβ is required for the correct programming of the HE downstream of Vegf and independently of arterial programming. We demonstrate that Jag1a is a target of TGFβ signaling, and jag1a overexpression in endothelium rescues the loss of HSPCs in tgfbR2-depleted embryos. Finally, we identified two independent sources of ligand: TGFβ1a and TGFβ1b in the endothelium and TGFβ3 in the nearby notochord. Both inputs contribute to the regulation of jag1a in endothelium through the TgfβR2 receptor and thus enable Notch signaling to program the HE prior to specification of HSPCs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介造血干细胞(HSC)是在胚胎发育过程中从一部分动脉内皮细胞中指定的位于背主动脉(DA)的地板上。 HSC通过称为内皮细胞向造血细胞转化(EHT)(,,)的过程出现。在斑马鱼中,由EHT产生的造血干细胞和祖细胞(HSPC)迁移到尾部造血组织(CHT),在那里它们增殖并分化为红系和髓系(,)。一些会离开CHT并迁移到胸腺以产生T细胞,而另一些会移到肾脏,即斑马鱼造血的成年部位,相当于哺乳动物的骨髓()。转录因子Runx1是必需的小鼠和斑马鱼的EHT(,)。它在DA底的表达是由23 hpf在斑马鱼()中启动的,它标志着致血命运,即造血内皮(HE)的细胞群。依次需要包括Hedgehog,VEGF,Notch和BMP在内的几种信号通路来调节动脉内皮的编程和HSPC的出现(“”,“”)。 Notch受体Notch1是HSPC从HE出现的主要驱动力,可能是其配体Jagged1的下游(,,href="#bib28" rid="bib28" class=" bibr popnode"> Jang et al。,2015 < / a>),并被认为可以通过Gata2驱动runx1表达(href="#bib56" rid="bib56" class=" bibr popnode"> Robert-Moreno等人,2005 )。 Jagged1对于动脉编程是必不可少的,但在内皮细胞中对于规范HSPC是必需的(href="#bib17" rid="bib17" class=" bibr popnode"> Espin-Palazon等,2014 , href="#bib18" rid="bib18" class=" bibr popnode"> Gama-Norton等人,2015 ,href =“#bib57” rid =“ bib57” class =“ bibr popnode“> Robert-Moreno等人,2008 )。在人类中,转化生长因子β(TGFβ)信号缺陷与HSPC的增殖性疾病有关,例如急性髓细胞性白血病和T细胞急性淋巴细胞性白血病(href =“#bib32” rid =“ bib32” class =“ bibr popnode”> Kim和Letterio,2003年)。最近,研究表明,骨髓小生境中的旁分泌TGFβ信号维持了居民HSC库的静止状态(href="#bib68" rid="bib68" class=" bibr popnode"> Zhao等人,2014年) ),还可以指导区分沿袭的HSC亚型(href="#bib7" rid="bib7" class=" bibr popnode"> Challen et al。,2010 ) TGFβ是成年HSC增殖和分化的关键调节剂。然而,尚不清楚TGFβ在HSC的形成中是否起作用。配体TGFβ1或其受体TGFβR2的突变体,包括内皮特异性条件性敲除小鼠,死于E9.5和E10.5之间,这是由于壁膜细胞向卵黄囊脉管的募集不足以及随后的血管完整性丧失所致(href =“#bib69” rid =“ bib69” class =“ bibr popnode”> Carvalho等人,2004 ,href="#bib15" rid="bib15" class=" bibr popnode">迪克森等等,1995 ,href="#bib52" rid="bib52" class=" bibr popnode"> Oshima等,1996 )。这早于HSPCs在胚胎固有体中出现之前(href="#bib13" rid="bib13" class=" bibr popnode"> de Bruijn et al。,2002 ),实际上排除了对HSPCs的分析。 TGFβ信号转导在小鼠HSPC规范中的作用。但是,斑马鱼在外部发育,不依赖胚外组织生存。此外,直到72 hpf(href="#bib60" rid="bib60" class=" bibr popnode"> Santoro et al。,2009 ),壁画细胞才会募集到内皮细胞。在DA中指定HSPC之后的几天。因此,我们可以解决TGFβ在斑马鱼HSPC出现中的作用,而不受小鼠模型的固有限制。TGFβ超家族包括BMP,激活素,节点和TGFβ。小鼠中存在三种TGFβ配体:TGFβ1,TGFβ2和TGFβ3(href="#bib23" rid="bib23" class=" bibr popnode">古曼和穆默里,2000 ),它们全都通过单个II型丝氨酸-苏氨酸激酶受体(TGFβR2)发出信号,该受体募集I型受体激活素样激酶1(Alk1)或Alk5(href =“#bib61” rid =“ bib61” class =“ bibr popnode” > Shi和Massague,2003 。 Alk1的表达基本上仅限于内皮细胞(EC)(href="#bib51" rid="bib51" class=" bibr popnode"> Oh等,2000 ),而Alk5的表达更为广泛(href="#bib24" rid="bib24" class=" bibr popnode"> Goumans et al。,2002 ),但也存在于EC中。活化的Alk1使Smad1磷酸化,Smad5和Smad9,而激活的Alk5使Smad2和Smad3磷酸化(href="#bib61" rid="bib61" class=" bibr popnode"> Shi和Massague,2003 )。活化的Smad与Smad Smad4一起迁移到细胞核,并与Co-activator或co-repressor一起调节转录(href="#bib61" rid="bib61" class=" bibr popnode"> Shi和Massague, 2003 )。此外,TGFβ可以通过非经典的Erk,JNK和p38 MAPK激酶信号通路来激发转录反应(href="#bib14" rid="bib14" class=" bibr popnode"> Derynck和Zhang,2003年) )。因此,为了避免TGFβ引起的细胞内信号转导的复杂性,我们将注意力集中在TgfβR2(TGFβ的II型受体)上。 TGFβR2活性的废除表明TGFβ信号传导在HSPC的形成中起关键作用。对于在Vegf下游进行正确的HE编程,以及与动脉编程无关,都需要TGFβ。我们证明Jag1a是TGFβ信号传导的靶标,而jag1a在内皮中的过表达可以挽救tgfbR2缺失胚胎中HSPC的丢失。最后,我们确定了两个独立的配体来源:内皮中的TGFβ1a和TGFβ1b以及附近脊索中的TGFβ3。两种输入均通过TgfβR2受体有助于调节内皮细胞中的jag1a,从而使Notch信号能够在HSPC规范之前对HE进行编程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号