首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish
【2h】

Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish

机译:持续的有节奏的大脑活动是斑马鱼视觉运动感知的基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionVisual aftereffects are often considered the by-products of neuronal adaptation processes for the optimization of sensory perception. Typical examples are calibration between movement perception and self-produced locomotion, decorrelation to increase efficiency of sensory coding, and gain control of sensory stimuli to extend the dynamic range of detection (). Therefore, they are useful tools to study the neuronal mechanisms underlying visual perception.A particular example of visual aftereffects is the motion aftereffect (MAE), in which exposure to continuous, coherent, moving visual stimuli induces, following the cessation of the moving stimulus, the illusory perception of motion in the opposite direction. MAE was first described in ∼330 BC by Aristotle in his book Parva Naturalia (trans. ). Since then, many studies have described different psychophysical aspects of the phenomenon (, , , ). In addition to perceptual MAE, continuous, coherent, moving visual stimuli can induce oculomotor MAE (, , ). Despite the vast literature on MAE, only a handful of studies have examined the underlying neuronal mechanisms. MAE was found to be associated with either a decrease or an increase in the response of direction-selective neurons. Direction-selective neurons are specialized for detecting motion along specific axes of the visual field, and they respond to visual stimulus moving in a given direction (the preferred direction) but do not respond or respond less to those moving in the opposite direction (the null direction). Using single-neuron recordings, MAE-associated adaptations have been described in different brain regions of different animal species: the rabbit’s retina (), the owl monkey’s medial temporal lobe (), the cat’s primary visual cortex (), the pigeon’s nucleus lentiformis mesencephali (), and the fly’s lobula plate ().Despite these advances, we lack a comprehensive explanation of the underlying mechanisms and the neuronal correlates of MAE at the circuit level. To that end, and to shed light on the potential mechanisms underlying visual motion perception, we used transgenic zebrafish larvae expressing the genetically encoded calcium indicator GCaMP3. We monitored the dynamics of large neuronal circuits from different brain regions using two-photon microscopy in an intact, non-anesthetized, behaving vertebrate model.In zebrafish, the retinal ganglion cells (RGCs) project to at least ten arborization fields, with the optic tectum (OT) being the largest (, href="#bib29" rid="bib29" class=" bibr popnode">Nevin et al., 2010). The optic tectum is the zebrafish’s most complex layered brain structure, and it is essential for visually guided prey detection and capture (href="#bib15" rid="bib15" class=" bibr popnode">Gahtan et al., 2005, href="#bib47" rid="bib47" class=" bibr popnode">Romano et al., 2015). Direction-selective neurons are found in both the retina (href="#bib30" rid="bib30" class=" bibr popnode">Nikolaou et al., 2012) and the optic tectum (href="#bib14" rid="bib14" class=" bibr popnode">Gabriel et al., 2012, href="#bib16" rid="bib16" class=" bibr popnode">Gebhardt et al., 2013, href="#bib18" rid="bib18" class=" bibr popnode">Grama and Engert, 2012, href="#bib20" rid="bib20" class=" bibr popnode">Hunter et al., 2013, href="#bib47" rid="bib47" class=" bibr popnode">Romano et al., 2015).Using two-photon calcium imaging, it has been shown that the pretectum and the superficial layers of the optic tectum respond to large-field coherent visual motion presented to the contralateral eye (href="#bib42" rid="bib42" class=" bibr popnode">Portugues et al., 2014). Similarly, unilateral stimulation of the pretectal area induced eye movements resembling the optokinetic response (OKR; href="#bib22" rid="bib22" class=" bibr popnode">Kubo et al., 2014).Here, we show that following the presentation of a coherently moving visual pattern (conditioning stimulus, CS) capable of inducing OKR, zebrafish larvae generated, in the absence of sensory stimuli, optokinetic movements in the direction opposite that induced by the CS. Reminiscent of MAE, these results suggest that following the CS, the larvae experienced perception of visual motion in the opposite direction. Using optogenetics to transiently block eye movements during the presentation of the CS, we show that neither muscular fatigue nor eye proprioception feedback plays a role in the generation of optokinetic MAE-like behavior. Moreover, two-photon laser ablation of the optic tectum significantly reduced MAE-like behavior. Using two-photon calcium imaging of transgenic zebrafish larva expressing GCaMP3, we monitored the neuronal activities of the larva’s two main visual centers (retina and optic tectum). We found that following stimulus cessation, direction-selective neurons tuned to the direction of the CS displayed strong habituation in the optic tectum but not in the retina. Furthermore, we observed sustained rhythmic neuronal activity associated with the optokinetic MAE-like behavior among a specific group of direction-selective tectal neurons, thus arguing for a neuronal correlate of the MAE-like behavior. Finally, an empirical mathematical model based on the competition between direction-selective tectal neurons related to their activity could reproduce the OKR, the optokinetic MAE-like behavior, and the unconditioned spontaneous eye movements observed in the absence of moving visual stimulation. Overall, our results propose a functional neuronal circuit in the zebrafish optic tectum that is capable of generating perception of visual motion.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介视觉后效应通常被认为是神经元适应过程的副产品,用于优化感官知觉。典型示例包括在运动知觉和自我产生的运动之间进行校准,去相关以提高感官编码的效率以及对感官刺激进行增益控制以扩展检测的动态范围()。因此,它们是研究视觉感知基础的神经元机制的有用工具。视觉后效应的一个特殊例子是运动后效应(MAE),其中运动的后遗症导致在持续,连贯,运动的视觉刺激下暴露,在相反方向上对运动的错觉。 MAE最早是由亚里斯多德(Aristotle)于公元前330年在他的《自然科学》一书中描述的。从那时起,许多研究都描述了现象(,,,)的不同心理生理方面。除感知性MAE外,连续,连贯,移动的视觉刺激还可诱发动眼MAE(“”)。尽管有关MAE的文献很多,但只有少数研究检查了潜在的神经元机制。发现MAE与方向选择神经元反应的减少或增加有关。方向选择神经元专门用于检测沿特定视场轴的运动,它们对沿给定方向(首选方向)移动的视觉刺激做出反应,但对沿相反方向移动的视觉刺激没有反应或反应较少(无效)方向)。使用单神经元记录,已经描述了MAE相关的适应性在不同动物物种的不同大脑区域中的分布:兔子的视网膜(),猫头鹰的猴的颞颞叶(),猫的主要视觉皮层(),鸽子的中型脑中脑尽管有这些进展,但我们在回路水平上对MAE的潜在机制和神经元相关性缺乏全面的解释。为此,为了阐明视觉运动感知的潜在机制,我们使用了转基因的斑马鱼幼虫来表达遗传编码的钙指示剂GCaMP3。我们在完整,无麻醉且行为正常的脊椎动物模型中使用双光子显微镜监控了来自不同大脑区域的大型神经元回路的动力学。在斑马鱼中,视网膜神经节细胞(RGC)投射到至少十个乔木场,并通过光学tectum(OT)最大(href="#bib29" rid="bib29" class=" bibr popnode"> Nevin等人,2010 )。视神经台是斑马鱼最复杂的分层大脑结构,对于视觉引导的猎物检测和捕获至关重要(href="#bib15" rid="bib15" class=" bibr popnode"> Gahtan等人,2005年,href="#bib47" rid="bib47" class=" bibr popnode">罗马等人,2015 )。在视网膜(href="#bib30" rid="bib30" class=" bibr popnode"> Nikolaou et al。,2012 )和视神经顶盖(href =“#bib14” rid =“ bib14” class =“ bibr popnode”>加布里埃尔等人,2012 ,href="#bib16" rid="bib16" class=" bibr popnode">盖布哈特等等人,2013 ,href="#bib18" rid="bib18" class=" bibr popnode"> Grama and Engert,2012 ,href =“#bib20” rid =“ bib20“ class =” bibr popnode“> Hunter等人,2013 ,href="#bib47" rid="bib47" class=" bibr popnode"> Romano等人,2015 )。使用双光子钙成像,已显示前盖和视盖的表层对呈现给对侧眼睛的大视野连贯视觉运动有反应(href =“#bib42” rid =“ bib42 “ class =” bibr popnode“>葡萄牙等人,2014 )。类似地,对前区的单侧刺激会引起类似于视动反应的眼球运动(OKR; href="#bib22" rid="bib22" class=" bibr popnode">久保等人,2014 )。在这里,我们显示出能够诱导OKR的连贯运动视觉模式(条件刺激,CS)的呈现,在没有感觉刺激的情况下,斑马鱼幼虫产生了沿CS诱导的相反方向的光动力运动。这些结果让人联想到MAE,表明在CS后,幼虫经历了相反方向的视觉运动感知。在介绍CS的过程中使用光遗传学短暂阻断眼睛的运动,我们表明肌肉疲劳或眼睛本体感受反馈均未在光动能MAE样行为的产生中发挥作用。此外,光子晶体的双光子激光烧蚀显着降低了类MAE行为。使用表达GCaMP3的转基因斑马鱼幼虫的双光子钙成像,我们监测了幼虫两个主要视觉中心(视网膜和视神经顶盖)的神经元活动。我们发现,在停止刺激之后,调整为CS方向的方向选择性神经元在视神经顶盖中表现出很强的习惯性,但在视网膜中却没有。此外,我们观察到在一组特定方向选择性的顶盖神经元中,与视动MAE样行为相关的持续节律性神经元活动,因此争论了MAE样行为的神经元相关性。最后,基于方向选择性的支配神经元之间的竞争与其活动有关的经验数学模型可以重现OKR,光动力学MAE样的行为以及在没有移动视觉刺激的情况下观察到的无条件的自发眼球运动。总体而言,我们的研究结果提出了斑马鱼视神经皮质中的一个功能性神经元回路,该回路能够产生视觉运动感知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号