首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Faster permutation inference in brain imaging
【2h】

Faster permutation inference in brain imaging

机译:脑成像中更快的置换推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations irrespective of generic software or hardware improvements. We compare the following approaches: (i) performing a small number of permutations; (ii) estimating the p-value as a parameter of a negative binomial distribution; (iii) fitting a generalised Pareto distribution to the tail of the permutation distribution; (iv) computing p-values based on the expected moments of the permutation distribution, approximated from a gamma distribution; (v) direct fitting of a gamma distribution to the empirical permutation distribution; and (vi) permuting a reduced number of voxels, with completion of the remainder using low rank matrix theory. Using synthetic data we assessed the different methods in terms of their error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the rejection of the null hypotheses (known as the resampling risk). We also conducted a re-analysis of a voxel-based morphometry study as a real-data example. All methods yielded exact error rates. Likewise, power was similar across methods. Resampling risk was higher for methods (i), (iii) and (v). For comparable resampling risks, the method in which no permutations are done (iv) was the absolute fastest. All methods produced visually similar maps for the real data, with stronger effects being detected in the family-wise error rate corrected maps by (iii) and (v), and generally similar to the results seen in the reference set. Overall, for uncorrected p-values, method (iv) was found the best as long as symmetric errors can be assumed. In all other settings, including for familywise error corrected p-values, we recommend the tail approximation (iii). The methods considered are freely available in the tool PALM — Permutation Analysis of Linear Models.
机译:置换测试越来越多地被用作推理神经影像分析的可靠方法。但是,它们是计算密集型的。对于小型非成像数据集,很少会重新计算模型成千上万的问题,但是对于大型,复杂的模型,即使具有廉价的计算能力,这也可能会非常慢。在这里,我们利用与通用线性模型(GLM)一起使用的统计信息的属性及其分布来获得加速,而与通用软件或硬件改进无关。我们比较以下方法:(i)执行少量排列; (ii)估计p值作为负二项分布的参数; (iii)将广义帕累托分布拟合到置换分布的尾部; (iv)根据置换分布的预期矩(从伽马分布近似)计算p值; (v)将伽马分布直接拟合到经验置换分布; (vi)排列减少的体素数量,其余部分使用低秩矩阵理论完成。使用综合数据,我们根据错误率,功效,与参考结果的一致性以及就否定原假设的拒绝做出不同决策的风险(称为重采样风险)评估了不同的方法。我们还对基于体素的形态学研究进行了重新分析,作为一个真实数据示例。所有方法均产生准确的错误率。同样,不同方法的功效相似。方法(i),(iii)和(v)的重采样风险较高。对于可比较的重采样风险,绝对不最快的方法是不进行任何排列(iv)的方法。所有方法都为真实数据生成了视觉上相似的图,在(iii)和(v)的家庭式错误率校正图中检测到了更强的效果,并且通常与参考集中的结果相似。总体而言,对于未校正的p值,只要可以假设对称误差,方法(iv)就是最好的。在所有其他设置中,包括针对家庭误差校正的p值,我们建议使用尾部逼近(iii)。所考虑的方法可在工具PALM-线性模型的置换分析中免费获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号