首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Navigation through the Plasma Membrane Molecular Landscape Shapes Random Organelle Movement
【2h】

Navigation through the Plasma Membrane Molecular Landscape Shapes Random Organelle Movement

机译:导航通过质膜分子景观形状随机细胞器运动。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">Results and DiscussionTo address the question of whether membrane-proximal vesicles behave in a controlled manner, we first posed a simple question: when new vesicles are recruited to the plasma membrane, is this spatially random, or is there some order to this process? We labeled large dense-core vesicles (LDCVs) in secretory cells (phaeochromocytoma cells, PC12s) using soluble cargo Neuropeptide Y (NPY) fused to EGFP [, ]. We stimulated cells to secrete and then followed the recruitment of new LDCVs using total internal reflection fluorescence microscopy (TIRFM). We quantified trajectories taken by all vesicles before, during, and after exocytosis. This marked the image plane of the plasma membrane with areas visited by LDCVs during the recording period and allowed us to determine the arrival sites of any new recruits. B displays frames from , showing a vesicle arriving on top of a site occupied by an earlier LDCV, scanning the same region before moving off to visit at least two other previously occupied regions. The area under scrutiny is ∼4 μm2. We found LDCVs follow similar trajectories to similar (but not identical) fusion sites on the cell surface (A–S2D), even after treatment with Methyl-β-cyclodextrin to quantifiably disrupt plasma membrane lipid order [] (E–S2G). These data appear to support current models, suggesting that LDCVs visit preferred sites on the membrane, using defined, re-usable routes that intuitively appear like physical tracks.Current Model for Vesicle Dynamics at the Membrane(A) Stylized cartoon showing a model for vesicle dynamics at the plasma membrane, where LDCVs are docked on molecular machinery depots. This is illustrated as a “well,” attracting LDCVs.(B) Images from a TIRFM recording of a PC12 cell expressing lumenal NPY-EGFP. A single vesicle (gray sphere) is shown (track in color) scanning the membrane, visiting areas preferred by other vesicles (gray tracks). Grid scale, 500 nm grid edge. Color bar shows time.See also and .
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>结果与讨论要解决膜近端囊泡是否具有受控行为的问题,我们首先提出一个简单的问题:当新的囊泡被募集到质膜上时,这在空间上是随机的,还是这个过程有某种顺序?我们使用融合到EGFP的可溶性货物Neuropeptide Y(NPY)在分泌细胞(嗜铬细胞瘤细胞,PC12s)中标记了大的密集核心囊泡(LDCV)。我们刺激细胞分泌,然后使用全内反射荧光显微镜(TIRFM)募集新的LDCV。我们量化了胞吐之前,期间和之后所有囊泡所采取的轨迹。这在质膜的图像平面上标记了记录期间LDCV所访问的区域,并使我们能够确定任何新兵的到达位置。 B显示的帧,显示一个囊泡到达了较早的LDCV所占据的位置的顶部,在离开之前访问至少两个其他先前占据的区域之前扫描了相同区域。受检面积为〜4μm 2 。我们发现,即使在用甲基-β-环糊精处理可量化地破坏质膜脂阶[](E-S2G)之后,LDCV的轨迹也类似,但仍相似于细胞表面上相似(但不相同)的融合位点。这些数据似乎支持当前的模型,这表明LDCV使用已定义的,可重复使用的路线访问了膜上的首选位置,这些路线直观地看起来像物理轨迹。<!-fig ft0-> <!-fig mode = article f1 -> <!-标题a7->膜上囊泡动力学的当前模型(A)程式化卡通显示质膜上囊泡动力学的模型,其中LDCV停靠在分子机械仓库上。这被描述为吸引LDCV的“孔”。(B)来自TIRFM记录的表达腔NPY-EGFP的PC12细胞的图像。显示了单个囊泡(灰色球体)(彩色轨道),扫描膜,访问其他囊泡首选的区域(灰色轨道)。网格规模,500 nm网格边缘。彩条显示时间,另请参阅和。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号