首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints
【2h】

Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints

机译:使用多蛋白质原子距离约束预测蛋白质动力学和变构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionProteins move on a variety of timescales, encompassing motions from the vibration of a single bond to the collective movement of whole domains (, ). X-ray crystallography provides a static view of the structure of proteins. However, when only static structures are available the dynamic processes crucial to protein function () are difficult to elucidate. Experimental techniques to explore the dynamics of proteins, such as nuclear magnetic resonance (NMR), are sophisticated and time-consuming. Molecular dynamics (MD) is a widespread computational method for predicting protein motions and generating ensembles of protein structures. It is effective at modeling motions up to the timescale of nanoseconds. However, the computational cost of modeling proteins on the scale of microseconds or milliseconds means that MD is not suitable for larger-scale transitions. Advanced MD methods such as targeted or accelerated MD can overcome this sampling problem (), but these methods are not yet routinely applicable due to the parameterization required for each protein.Various non-MD methods have been used to generate ensembles of protein structures from a crystal input structure, and hence explore protein dynamics. These ensembles have uses in flexible ligand docking (), generating poses for protein-protein docking (), predicting structures on trajectories between two crystal structures (), and predicting flexible regions in proteins ().CONCOORD (, ) is a distance geometry method to generate structures from an input structure, and consists of a two-step process. First, the different types of chemical interactions in the input structure, e.g., hydrogen bonding and hydrophobic interactions, are converted to distance constraints with a given tolerance. Next, an iterative minimization procedure is performed to move a set of randomly placed coordinates such that most distance constraints are satisfied. This generates a protein structure in a manner similar to the way a structure is produced from NMR constraints. The process is repeated to obtain an ensemble of structures. tCONCOORD extends CONCOORD and gives better sampling of proteins with large conformational changes by predicting hydrogen bonds in the structure that are liable to break ().Normal mode analysis (NMA) can also be used to generate conformations of proteins, usually by modeling the protein along the relevant vibrations. The NMSim web server (, ) finds flexible and rigid protein regions using the graph theoretical approach FIRST (), then generates conformations along low-frequency normal modes. The generated structures are iteratively corrected to produce valid stereochemistry.Modeling conformational transitions is essential in understanding biological processes such as allostery, whereby an effector at a site distant from the active site causes a change in structure or dynamics that leads to a functional change in the protein (). Allostery can arise from non-covalent interactions (e.g., drug binding), covalent interactions (e.g., phosphorylation) and light absorption. This intrinsic property of proteins (href="#bib18" rid="bib18" class=" bibr popnode">Gunasekaran et al., 2004) is important in processes such as cellular signaling and disease, although most allosteric mechanisms remain an enigma and a universal mechanism has not been found (href="#bib34" rid="bib34" class=" bibr popnode">Nussinov and Tsai, 2013).The discovery of new allosteric modulators is of pressing concern, due to their considerable potential as therapeutics (href="#bib26" rid="bib26" class=" bibr popnode">Lamba and Ghosh, 2012). Allosteric modulators have been elucidated for targets as diverse as the γ-aminobutyric acid receptor, hepatitis C virus polymerase, and RNA. Allosteric modulator discovery by virtual screening is an exciting prospect furthered by the elucidation of previously unknown allosteric sites found on solved protein structures (href="#bib35" rid="bib35" class=" bibr popnode">Panjkovich and Daura, 2010). There is an increasing number of entries in the AlloSteric Database (ASD) (href="#bib44" rid="bib44" class=" bibr popnode">Shen et al., 2016), which currently contains more than 1,400 proteins. This shows that a large variety of proteins have allosteric character and implies that many proteins have allosteric character yet to be discovered. However, discovery of allosteric drugs presents challenges beyond those encountered in orthosteric drug discovery. Whether the drug will activate or inhibit the protein is difficult to predict, and in many cases the location of allosteric sites is unknown. Existing approaches for allosteric site prediction include using changes in flexibility on ligand binding (href="#bib31" rid="bib31" class=" bibr popnode">Mitternacht and Berezovsky, 2011, href="#bib36" rid="bib36" class=" bibr popnode">Panjkovich and Daura, 2012, href="#bib17" rid="bib17" class=" bibr popnode">Greener and Sternberg, 2015), machine learning on pocket features (href="#bib23" rid="bib23" class=" bibr popnode">Huang et al., 2013, href="#bib10" rid="bib10" class=" bibr popnode">Cimermancic et al., 2016) and structural conservation (href="#bib35" rid="bib35" class=" bibr popnode">Panjkovich and Daura, 2010).Allostery can be thought of as a property of the ensemble of available protein structures (href="#bib32" rid="bib32" class=" bibr popnode">Motlagh et al., 2014). A perturbation at any site in the structure leads to a shift in the occupancy of states by the population. The conformational selection paradigm suggests that all states available to the protein pre-exist, but certain states (e.g., an allosteric inactive state) are only significantly populated when the allosteric modulator is present. If a method can model the structural ensemble in such a way that the effect of modulators can be predicted, sites with allosteric character can be found.Here we present a novel distance geometry-based method, named ExProSE (Exploration of Protein Structural Ensembles), for protein ensemble generation and allosteric site prediction. By using distance constraints from two crystal structures, ExProSE produces ensembles of protein structures that sample biologically relevant conformations. The ensemble differs from an ensemble arising from MD. The structures are not a snapshot in time on a trajectory; instead, each structure is generated independently. We show that ExProSE provides better coverage of the conformational space than existing methods. Allosteric sites on a set of proteins are predicted by examining the effect of potential modulators on the population distribution of the ensemble. To our knowledge, this is the first study to integrate available structural data into a general framework that allows exploration of protein dynamics and allostery, and that provides models for further studies such as ligand docking.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介蛋白质在各种时间范围内运动,包括从单键振动到振动的运动。整个域的集体运动(,)。 X射线晶体学提供了蛋白质结构的静态视图。但是,当只有静态结构可用时,很难阐明对蛋白质功能至关重要的动态过程。探索蛋白质动力学的实验技术(例如核磁共振(NMR))复杂且耗时。分子动力学(MD)是一种广泛的计算方法,用于预测蛋白质运动并生成蛋白质结构的集合体。它可以有效地模拟高达纳秒级的运动。但是,以微秒或毫秒为单位对蛋白质进行建模的计算成本意味着MD不适合较大规模的转换。先进的MD方法(例如靶向或加速的MD)可以克服这种采样问题(),但由于每种蛋白质都需要进行参数化,因此这些方法尚未常规应用。各种非MD方法已用于从蛋白质中生成蛋白质结构的集合体。晶体输入结构,从而探索蛋白质动力学。这些合奏可用于柔性配体对接(),为蛋白质-蛋白质对接生成姿势(),预测两个晶体结构之间的轨迹上的结构()以及预测蛋白质中的柔性区域().CONCOORD(,)是一种距离几何方法从输入结构生成结构,并包括两步过程。首先,将输入结构中不同类型的化学相互作用,例如氢键和疏水相互作用,转换为具有给定公差的距离约束。接下来,执行迭代最小化过程以移动一组随机放置的坐标,从而满足大多数距离约束。这以类似于由NMR约束产生结构的方式生成蛋白质结构。重复该过程以获得结构的整体。 tCONCOORD扩展了CONCOORD并通过预测结构中易于断裂的氢键()更好地取样了具有较大构象变化的蛋白质。正态模式分析(NMA)也可用于生成蛋白质构象,通常通过对蛋白质进行建模相关的振动。 NMSim Web服务器(,)使用图论方法FIRST()查找柔性和刚性蛋白质区域,然后沿低频正常模式生成构象。迭代校正产生的结构以产生有效的立体化学。构象转变建模对于理解生物过程(如变构)至关重要,由此远离活性位点的位点的效应子会导致结构或动力学变化,从而导致功能改变。蛋白质()。变构可源自非共价相互作用(例如,药物结合),共价相互作用(例如,磷酸化)和光吸收。蛋白质的这种内在特性(href="#bib18" rid="bib18" class=" bibr popnode"> Gunasekaran et al。,2004 )在细胞信号和疾病等过程中很重要,尽管大多数变构机制仍然是一个谜,尚未发现通用机制(href="#bib34" rid="bib34" class=" bibr popnode"> Nussinov和Tsai,2013 )。发现了新的变构调节剂由于其巨大的治疗潜力而备受关注(href="#bib26" rid="bib26" class=" bibr popnode"> Lamba和Ghosh,2012 )。已经阐明了变构调节剂对多种靶标的作用,例如γ-氨基丁酸受体,丙型肝炎病毒聚合酶和RNA。通过虚拟筛选发现变构调节剂是一个令人兴奋的前景,其阐明了在已解决的蛋白质结构上发现的未知变构位点(href="#bib35" rid="bib35" class=" bibr popnode"> Panjkovich和Daura,2010年) )。 AlloSteric数据库(ASD)中的条目越来越多(href="#bib44" rid="bib44" class=" bibr popnode"> Shen等人,2016 ),当前包含超过1,400种蛋白质。这表明多种蛋白质具有变构特征,并且暗示许多蛋白质具有变构特征尚待发现。然而,变构药物的发现提出了超越正构药物发现中所遇到的挑战。药物会激活还是抑制蛋白质很难预测,而且在许多情况下,变构位点的位置是未知的。现有的变构位点预测方法包括使用配体结合灵活性的改变(href="#bib31" rid="bib31" class=" bibr popnode"> Mitternacht和Berezovsky,2011 ,href =“ #bib36“ rid =” bib36“ class =” bibr popnode“> Panjkovich和Daura,2012 ,href="#bib17" rid="bib17" class=" bibr popnode"> Greener和Sternberg,2015年),基于口袋特征的机器学习(href="#bib23" rid="bib23" class=" bibr popnode"> Huang等人,2013 ,href =“#bib10 “ rid =” bib10“ class =” bibr popnode“> Cimermancic等人,2016 )和结构养护(href="#bib35" rid="bib35" class=" bibr popnode"> Panjkovich和Daura,2010 )。变构可以被认为是可用蛋白质结构整体的一个属性(href="#bib32" rid="bib32" class=" bibr popnode"> Motlagh等人, 2014 )。结构中任何位置的扰动都会导致人口对国家的占用发生变化。构象选择范例表明该蛋白质可用的所有状态都已存在,但是某些状态(例如,变构非活性状态)仅在存在变构调节剂时才显着填充。如果一种方法可以预测结构调节剂的效果而对结构整体进行建模,则可以发现具有变构特征的位点。在这里,我们提出了一种基于距离几何的新颖方法,称为ExProSE(蛋白质结构体的探索),用于蛋白质集合生成和变构位点预测。通过使用两个晶体结构之间的距离限制,ExProSE产生了蛋白质结构的集合,这些结构采样了生物学相关的构象。该集合不同于由MD产生的集合。这些结构不是轨迹上的时间快照。相反,每个结构都是独立生成的。我们证明,与现有方法相比,ExProSE可以更好地覆盖构象空间。通过检查潜在的调节剂对整体种群分布的影响,可以预测一组蛋白质上的变构位点。据我们所知,这是第一项将可用结构数据整合到一个通用框架中的研究,该框架允许探索蛋白质动力学和变构,并为诸如配体对接之类的进一步研究提供模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号