首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data
【2h】

Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data

机译:在Ca2 +成像数据中跟踪多天相同的神经元

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionRecent advances in optical imaging techniques and genetically encoded Ca2+ indicators allow researchers to chronically record the activity of hundreds to thousands of neurons simultaneously in behaving animals (, , , , , ). This is typically done using two-photon imaging in head-fixed rodents (, , , ) or one-photon imaging with miniature microscopes in freely behaving rodents (, , , , , href="#bib5" rid="bib5" class=" bibr popnode">Cai et al., 2016). These techniques facilitate within-subject analyses that quantify changes in neuronal activity under different experimental conditions and over extended periods of time (reviewed in href="#bib52" rid="bib52" class=" bibr popnode">Ziv and Ghosh, 2015). However, without identifying the same individual neurons across imaging sessions, the analysis of time-lapse imaging data becomes limited to population-level statistics, thus losing a critical advantage offered by optical imaging relative to dense electrophysiological recordings. Following the activity of the same neurons over time can uncover the changes in the coding properties of individual cells and in the joint activity patterns that underlie the population-level statistics (href="#bib17" rid="bib17" class=" bibr popnode">Huber et al., 2012, href="#bib53" rid="bib53" class=" bibr popnode">Ziv et al., 2013, href="#bib24" rid="bib24" class=" bibr popnode">Lütcke et al., 2013, href="#bib18" rid="bib18" class=" bibr popnode">Jennings et al., 2015, href="#bib37" rid="bib37" class=" bibr popnode">Rubin et al., 2015, href="#bib4" rid="bib4" class=" bibr popnode">Burgess et al., 2016, href="#bib5" rid="bib5" class=" bibr popnode">Cai et al., 2016, href="#bib23" rid="bib23" class=" bibr popnode">Liberti et al., 2016, href="#bib36" rid="bib36" class=" bibr popnode">Rose et al., 2016, href="#bib10" rid="bib10" class=" bibr popnode">Driscoll et al., 2017, href="#bib13" rid="bib13" class=" bibr popnode">Grewe et al., 2017). Such accounts of long-term dynamics are crucially absent in many fields of neuroscience, including the study of learning and long-term memory, where understanding how information is represented, stored, and changes with time is key.To longitudinally follow the activity of individual neurons, the same cells need to be reliably identified (registered) across all time points in the experiment. Registration of the same neurons becomes challenging as the number of detected cells in a session, the number of sessions, and the intervals between them increase. Cell registration is further complicated in data from one-photon Ca2+ imaging, in comparison to two-photon imaging, due to light scattering and lack of optical sectioning (href="#bib48" rid="bib48" class=" bibr popnode">Wilt et al., 2009, href="#bib50" rid="bib50" class=" bibr popnode">Yang and Yuste, 2017), both of which increase the crosstalk between the signals of neighboring neurons in the two-dimensional field of view (FOV). Furthermore, since one-photon microscopy mostly reveals transient and localized changes in fluorescence that exceed the background noise, a cell must be active to be detected. Thus, the set of detected cells can differ between sessions (href="#bib53" rid="bib53" class=" bibr popnode">Ziv et al., 2013, href="#bib35" rid="bib35" class=" bibr popnode">Resendez et al., 2016, href="#bib13" rid="bib13" class=" bibr popnode">Grewe et al., 2017, href="#bib49" rid="bib49" class=" bibr popnode">Xia et al., 2017), and a one-to-one mapping of neural identity across sessions is typically not attainable. Taken together, these factors introduce uncertainty and, consequently, potential errors to the cell registration procedure.While numerous methods for detecting cells and extracting their activity from Ca2+ imaging data have been developed (href="#bib34" rid="bib34" class=" bibr popnode">Reidl et al., 2007, href="#bib45" rid="bib45" class=" bibr popnode">Vogelstein et al., 2009, href="#bib46" rid="bib46" class=" bibr popnode">Vogelstein et al., 2010, href="#bib27" rid="bib27" class=" bibr popnode">Mukamel et al., 2009, href="#bib12" rid="bib12" class=" bibr popnode">Grewe et al., 2010, href="#bib39" rid="bib39" class=" bibr popnode">Smith and Häusser, 2010, href="#bib29" rid="bib29" class=" bibr popnode">Oñativia et al., 2013, href="#bib30" rid="bib30" class=" bibr popnode">Pachitariu et al., 2013, href="#bib26" rid="bib26" class=" bibr popnode">Maruyama et al., 2014, href="#bib33" rid="bib33" class=" bibr popnode">Pnevmatikakis et al., 2016, href="#bib43" rid="bib43" class=" bibr popnode">Theis et al., 2016), relatively little effort has been devoted to the issue of cell registration across sessions. Previous studies that registered cells across sessions (href="#bib53" rid="bib53" class=" bibr popnode">Ziv et al., 2013, href="#bib18" rid="bib18" class=" bibr popnode">Jennings et al., 2015, href="#bib37" rid="bib37" class=" bibr popnode">Rubin et al., 2015, href="#bib5" rid="bib5" class=" bibr popnode">Cai et al., 2016, href="#bib23" rid="bib23" class=" bibr popnode">Liberti et al., 2016, href="#bib22" rid="bib22" class=" bibr popnode">Kitamura et al., 2017), regardless of whether using manual or automatic routines, did not provide a quantitative evaluation of registration accuracy in terms of false-positive errors (different cells falsely registered as the same cells) and false-negative errors (the same cells falsely registered as different cells). The lack of such quantitative evaluation could be detrimental in cases where the acquired data are inadequate for longitudinal analysis and may lead to misinterpretation of the data (href="#bib15" rid="bib15" class=" bibr popnode">Harris et al., 2016). For example, either falsely identifying two different cells as the same or falsely identifying the same cell as two different cells can lead to false conclusions about the dynamics of the neuronal activity. Moreover, previous work has used fixed registration decision parameters (e.g., distance threshold), which were not optimized to the specific data.To address these problems, we adopted a probabilistic approach to devise a method for automated cell registration across sessions. By modeling the distribution of similarities between neighboring cells across sessions, our method estimates the confidence of registration associated with each cell in the data. Moreover, it estimates the overall rates of false-positive and false-negative errors for different registration decision parameters. This approach enables cell registration that is adaptive and optimized to different datasets. Applying our method to data recorded from the hippocampus and cortex of behaving mice, we show that the same cells can be tracked over multiple weeks with estimated false-positive and false-negative rates <5%, yielding more accurate registration than the routines utilized in previous studies. Moreover, we find that registration accuracy remains high with increased numbers of sessions, demonstrating the method’s suitability for longitudinal studies. We provide an open source MATLAB code for cell registration that implements the approach presented in this paper (see href="#sec4" rid="sec4" class=" sec">Experimental Procedures).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介光学成像技术和遗传编码的Ca 2 + 的最新进展>指标使研究人员能够长期记录行为动物(,,,,,)中数百至数千个神经元的活动。通常使用固定头的啮齿动物(,,,)中的两光子成像,或使用行为自由的啮齿动物中的微型显微镜(,,,,,,href =“#bib5” rid =“ bib5” class =“ bibr popnode”>蔡等人,2016 )。这些技术有助于在受试者内部进行分析,以量化在不同实验条件下以及长时间内神经元活动的变化(参见href="#bib52" rid="bib52" class=" bibr popnode"> Ziv和Ghosh, 2015 )。但是,如果在整个成像过程中都没有识别出相同的单个神经元,则延时成像数据的分析将仅限于总体水平的统计数据,因此,相对于密集的电生理记录,光学成像所提供的关键优势将丧失。随着时间的流逝,同一神经元的活动可以揭示单个细胞的编码特性以及群体水平统计基础的联合活动模式的变化(href =“#bib17” rid =“ bib17” class =“ bibr popnode“> Huber等人,2012 ,href="#bib53" rid="bib53" class=" bibr popnode"> Ziv等人,2013 ,href = “#bib24” rid =“ bib24” class =“ bibr popnode”>吕克等人,2013 ,href="#bib18" rid="bib18" class=" bibr popnode">詹宁斯等人。,2015 ,href="#bib37" rid="bib37" class=" bibr popnode">鲁宾等人,2015 ,href =“#bib4” rid =“ bib4“ class =” bibr popnode“> Burgess等,2016 ,href="#bib5" rid="bib5" class=" bibr popnode">蔡等,2016 ,href="#bib23" rid="bib23" class=" bibr popnode"> Liberti et al。,2016 ,href =“#bib36” rid =“ bib36” class =“ bibr popnode “> Rose等人,2016 ,href="#bib10" rid="bib10" class=" bibr popnode"> Driscoll等人,2017 ,href =”# bib13“ rid =” bib13“ class =” bibr po pnode“> Grewe等人,2017 )。在神经科学的许多领域,包括学习和长期记忆的研究中,关键是缺乏长期动态的描述,在该领域中,了解信息如何表示,存储和随时间变化是关键。纵向跟踪个人活动在神经元中,需要在实验的所有时间点都可靠地识别(注册)相同的细胞。随着会话中检测到的细胞数量,会话数量以及它们之间的间隔增加,相同神经元的配准变得具有挑战性。与单光子Ca 2 + 成像相比,与双光子成像相比,由于光散射和缺少光学切片,细胞配准更加复杂(href =“#bib48” =“ bib48” class =“ bibr popnode”> Wilt等人,2009 ,href="#bib50" rid="bib50" class=" bibr popnode">杨与尤斯特,2017年),这两者都会增加二维视场(FOV)中相邻神经元信号之间的串扰。此外,由于单光子显微镜通常显示超过背景噪声的荧光瞬时变化和局部变化,因此必须激活细胞才能进行检测。因此,检测到的单元格集合在会话之间可能有所不同(href="#bib53" rid="bib53" class=" bibr popnode"> Ziv等人,2013 ,href =“#bib35 “ rid =” bib35“ class =” bibr popnode“> Resendez等,2016 ,href="#bib13" rid="bib13" class=" bibr popnode"> Grewe等,2017 ,href="#bib49" rid="bib49" class=" bibr popnode">夏等人,2017 ),以及跨会话的神经身份的一对一映射通常是无法达到的。综上所述,这些因素给细胞注册程序带来了不确定性,并因此带来了潜在的错误。尽管已开发出许多方法来检测细胞并从Ca 2 + 成像数据中提取其活性(href = “#bib34” rid =“ bib34” class =“ bibr popnode”>里德尔等。,2007 ,href="#bib45" rid="bib45" class=" bibr popnode"> Vogelstein等。 。,2009 ,href="#bib46" rid="bib46" class=" bibr popnode"> Vogelstein et al。,2010 ,href =“#bib27” rid =“ bib27“ class =” bibr popnode“>穆卡梅尔等人,2009 ,href="#bib12" rid="bib12" class=" bibr popnode"> Grewe等人,2010 ,href="#bib39" rid="bib39" class=" bibr popnode">史密斯和豪瑟尔,2010 ,href =“#bib29” rid =“ bib29” class =“ bibr popnode” >Oñativia等,2013 ,href="#bib30" rid="bib30" class=" bibr popnode"> Pachitariu等,2013 ,href="#bib26" rid="bib26" class=" bibr popnode">丸山等人,2014 ,href =“#bib33” rid =“ bib33” class =“ bibr popnode “> Pnevmatikakis等人,2016 ,href="#bib43" rid="bib43" class=" bibr popnode"> Theis等人,2016 ),已经付出了很少的努力专门讨论跨会话的单元注册问题。以前的研究是在会话中注册单元格(href="#bib53" rid="bib53" class=" bibr popnode"> Ziv等人,2013 ,href =“#bib18” rid =“ bib18“ class =” bibr popnode“>詹宁斯等人,2015 ,href="#bib37" rid="bib37" class=" bibr popnode">鲁宾等人,2015 ,href="#bib5" rid="bib5" class=" bibr popnode">蔡等人,2016 ,href =“#bib23” rid =“ bib23” class =“ bibr popnode “> Liberti等人,2016 ,href="#bib22" rid="bib22" class=" bibr popnode"> Kitamura等人,2017 ),无论是否使用手册或自动套用程序无法根据假阳性错误(不同的单元格错误地注册为同一单元格)和假阴性的错误(相同的单元格错误地注册为不同单元格)对注册准确性进行定量评估。如果所获取的数据不足以进行纵向分析,则可能缺乏这种定量评估,并且可能导致对数据的误解(href="#bib15" rid="bib15" class=" bibr popnode"> Harris等,2016 )。例如,错误地将两个不同的细胞识别为相同的细胞,或者错误地将相同的细胞识别为两个不同的细胞,可能导致有关神经元活动动力学的错误结论。此外,先前的工作使用了固定的注册决策参数(例如距离阈值),该参数并未针对特定数据进行优化。通过对跨会话的相邻单元格之间的相似度分布进行建模,我们的方法可以估算与数据中每个单元格关联的配准的置信度。此外,它估计了不同注册决策参数的假阳性和假阴性错误的总体发生率。这种方法可以实现对不同数据集进行自适应和优化的单元配准。将我们的方法应用于行为小鼠海马和皮层记录的数据,我们显示可以在数周内跟踪相同的细胞,估计的假阳性和假阴性率<5%,比使用常规程序产生更准确的配准。之前的学习。此外,我们发现随着会议次数的增加,注册准确性仍然很高,这表明该方法适用于纵向研究。我们提供了用于单元格注册的开源MATLAB代码,该代码实现了本文中介绍的方法(请参见href="#sec4" rid="sec4" class=" sec">实验程序)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号