首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus
【2h】

Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus

机译:先天性免疫反应和脱靶错剪是非洲爪蟾中常见的吗啉代诱导的副作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPerturbing the function of a gene of interest in order to infer its biological role is a common approach in many biological disciplines including embryology and physiology. Since forward and reverse genetic approaches have not been readily applicable to many organisms, the injection of morpholino oligomers (MOs) has been widely adopted instead. This antisense technology is based on a nucleic acid analog with a backbone of morpholine rather than deoxyribose rings, and neutral phosphorodiamidate instead of negatively charged phosphate linkages. According to the manufacturer, MOs are more stable, efficient, and specific in knocking down genes than alternative knockdown (KD) technologies such as short interfering RNA, mainly because of their neutral features that prevent electrostatic interactions with endogenous proteins at physiological pH (). Depending on their design, MOs can block either translation or splicing when hybridizing almost perfectly over their full length of 23–25 bases to the translation start site or splice acceptor or donor site. In addition, they can disrupt the activity of non-coding RNA species, such as microRNAs (miRNAs) or Y-RNAs (, ).While both anecdotal evidence and a number of published studies have suggested that MOs can cause off-target effects, it was previously assumed that, if appropriate control experiments are performed, robust knockout (KO)-like phenotypes could be generated. However, the use of TALEN and type II CRISPR genome editing technologies has now brought this assumption into question. Such studies have found that morphant and mutant phenotypes can be significantly different even when the morphant phenotype can be rescued by the introduction of cognate RNA species (). While in some cases it is likely that the morphant phenotype is an off-target effect, in others it may be that the genetic mutation does not result in a complete loss of function either because it gives rise to a hypomorphic allele or because the gene product is maternally inherited (). Mutating a gene can also in some circumstances lead to genetic compensation that is not triggered by MO-mediated KD ().Nevertheless, bearing in mind that MOs can replicate corresponding null phenotypes at least at a morphological level, their use in vertebrate embryos may be legitimate and advantageous for several reasons. First, some maternal-effect genes are difficult to study due to an essential function in later life stages, and cumbersome germline-specific KO strategies are required to produce viable females with homozygous KO eggs (). In particular, rapid-turnover proteins translated from maternal transcripts can be efficiently depleted with the injection of a translation-blocking MO into the zygote. In contrast, splice-blocking MOs will only perturb zygotic protein synthesis. Second, the simultaneous KD of multiple genes can reveal functional redundancies (, , ), which can be informative for future KO strategies. However, this may require more MOs being injected into the embryo, thus increasing the likelihood of off-target effects. Third, MOs can be introduced into different mutant and transgenic backgrounds either to screen for genetic interactions or to help characterizing phenotypes, without the need for time-consuming intercrossing. Fourth, MO-injected embryos do not need genotyping, so that large numbers can be collected. This is of particular importance given the expanding use of molecular profiling to analyze loss-of-function effects at the chromatin level. However, this kind of differential analysis assumes that KD and KO animals with identical macro- or microscopic defects, such as in morphology or behavior, share similarly derailed genomic readouts. We examined this hypothesis in the western clawed frog Xenopus tropicalis by generating Brachyury null mutants using TALENs and comparing these with corresponding, previously validated morphants () at a transcriptome-wide level.Our results showed that, while depletion of Brachyury resulted in the same dramatic loss of posterior mesoderm regardless of the gene interference technology employed, only control and Brachyury-targeting MOs perturbed hundreds of splicing events and caused excessive immune response-related gene transcription. These MO side effects were caused, on the one hand, by the off-target binding of premature transcripts and, on the other hand, by a cell-intrinsic (innate) immune reaction. The latter strongly correlated with the guanine-cytosine (GC) content of the injected MO. Proper dose and design optimization of the injected MO can mitigate these inadvertent effects. However, some specific off-target effects could not be eliminated even when an elevated incubation temperature was used in an effort to increase hybridization stringency. This is further corroborated by the kinetic analysis of MO oligomers binding off-target RNA sequences far below the minimal concentration required to produce a t/t2 KO-like phenotype. We expect that our findings will be critical to keep unintended disruptions in tissue and organ development to a minimum.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介干扰目的基因的功能以推断其生物学作用是常见的许多生物学学科的方法,包括胚胎学和生理学。由于正向和反向遗传方法不适用于许多生物,因此吗啉代低聚物(MO)的注射已被广泛采用。该反义技术基于具有吗啉主链而不是脱氧核糖环的核酸类似物,以及中性磷酸二氨基酯而不是带负电荷的磷酸酯键。根据制造商的说法,MOs在敲除基因方面比短敲除RNA等替代敲除(KD)技术更稳定,更有效,更特异性,主要是因为它们的中性特征可防止在生理pH值下与内源蛋白质发生静电相互作用。根据它们的设计,MO在其全长23–25个碱基上与翻译起始位点或剪接受体或供体位点几乎完全杂交时,可以阻断翻译或剪接。此外,它们还可以破坏非编码RNA种类的活性,例如microRNA(miRNA)或Y-RNA(,)。尽管轶事证据和许多已发表的研究表明,MO都可能引起脱靶效应,以前假设,如果进行适当的对照实验,可能会产生鲁棒的敲除(KO)样表型。然而,TALEN和II型CRISPR基因组编辑技术的使用现在使这一假设受到质疑。此类研究发现,即使可以通过引入同源RNA物种挽救形态表型,但形态表型和突变型表型也可以显着不同。虽然在某些情况下,吗啡型表型可能是脱靶效应,而在另一些情况下,则可能是因为遗传突变不会导致功能缺失,或者是因为它引起了亚型等位基因或基因产物是母系继承()。在某些情况下,基因突变也可能导致遗传补偿而不是由MO介导的KD()触发。尽管如此,请记住,MO至少可以在形态学水平上复制相应的无效表型,因此它们在脊椎动物胚胎中的使用可能是合法和有利的原因有几个。首先,由于在生命的后期阶段具有必不可少的功能,一些产妇效应基因难以研究,并且需要繁琐的种系特异性KO策略才能生产具有纯合KO卵的雌性成年女性()。特别地,通过将​​翻译阻断性MO注入合子,可以有效地消除从母体转录本翻译的快速周转蛋白质。相反,阻断剪接的MO仅会干扰合子蛋白的合成。其次,多个基因的同时KD可以揭示功能冗余(,,),这对于将来的KO策略很有帮助。但是,这可能需要将更多的MO注入到胚胎中,从而增加脱靶效应的可能性。第三,可以将MOs引入不同的突变体和转基因背景中,以筛选遗传相互作用或帮助表征表型,而无需耗时的杂交。第四,注入MO的胚胎不需要进行基因分型,因此可以收集大量胚胎。考虑到分子轮廓分析在染色质水平上分析功能丧失效应的广泛应用,这一点尤其重要。但是,这种差异分析假定具有相同宏观或微观缺陷(例如形态或行为)的KD和KO动物具有相似的脱轨基因组读数。我们通过利用TALENs产生Brachyury null突变体并将其与整个转录组水平的相应先前验证过的吗啡变体()进行了比较,研究了西部爪蟾Xenopustropicis的这一假说。无论采用何种基因干扰技术,后中胚层的丢失,仅对照和靶向Brachyury的MO会干扰数百个剪接事件,并导致与免疫反应相关的基因转录过度。这些MO副作用一方面是由于过早的转录物脱靶结合,另一方面是由于细胞内在(先天)免疫反应引起的。后者与注射的MO的鸟嘌呤-胞嘧啶(GC)含量密切相关。注射的MO的正确剂量和设计优化可以减轻这些无意的影响。然而,即使为了提高杂交严格性而使用升高的孵育温度也无法消除某些特定的脱靶效应。结合脱靶RNA序列的MO寡聚体的动力学分析进一步证实了这一点,所述MO寡聚体远远低于产生t / t2 KO样表型所需的最小浓度。我们希望我们的发现对于将组织和器官发育中的意外破坏降至最低至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号