首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution
【2h】

Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution

机译:全基因组CRISPR-KO筛查揭示了mTORC1介导的Gsk3调节在幼稚多能性维持和溶解中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMouse embryonic stem cells (mESCs) are derived from the inner cell mass of blastocyst-stage embryos and can be indefinitely propagated while maintaining the ability to differentiate into all three germ layers. They have served not only as a platform for genome manipulation and production of transgenic mice but also as an essential model system to study the molecular mechanisms of self-renewal and differentiation. In particular, mechanisms that underpin the maintenance of pluripotency have been the subject of intense research, establishing the framework through which the pluripotent state is regulated by intrinsic and extrinsic factors. Intrinsically, the core transcription factors Pou5f1, Sox2, and Nanog act together with accessory factors Esrrb, Klf2, and Tfcp2l1 to consolidate the pluripotent identity (). Extrinsically, leukemia inhibitory factor (LIF)-STAT3 signaling plays a key role to sustain pluripotency () and Wnt signaling cooperates to suppress differentiation (), whereas FGF-MAPK signaling is essential for mESCs to initiate differentiation (). In uncovering these basic principles, culture conditions that permit the preservation of pluripotency via dual inhibition of MEK and Gsk3 kinases (termed 2i) were established (). mESCs cultured with 2i closely resemble epiblasts in pre-implantation embryos, sharing transcriptomic and epigenomic features that reflect the ground or naive state of pluripotency (, ).As the mechanisms of pluripotency maintenance have become clearer, research focus has shifted toward understanding how the exit from pluripotency and initiation of lineage specification are achieved. In response to differentiation cues, mESCs must resolve the naive pluripotency network and initiate transcriptional events that drive the progression through an intermediate or formative state to the primed state (). One key factor regulating this process is Tcf7l1, which is a transcriptional suppressor and colocalizes with Pou5l1 and Sox2, thereby counteracting their transcriptional activation and suppressing the intrinsic pluripotency program (). Conversely, loss of Tcf7l1 resulted in upregulation of Nanog, severely delaying the onset of differentiation (). The activity of Tcf7l1 is subject to regulation by Wnt signaling and thus depends on Gsk3 activity. Inhibition of Gsk3 results in the nuclear translocation of β-catenin, which upon binding to Tcf7l1, abrogates its suppressor activity (, ). This is a clear example of how extrinsic signaling dictates the dissolution of the core pluripotency network. Although reverse and forward genetic approaches have been successful in identifying such factors (, , , href="#bib29" rid="bib29" class=" bibr popnode">Leeb et al., 2014, href="#bib44" rid="bib44" class=" bibr popnode">Pereira et al., 2006), the full repertoire of genes and pathways involved in this process remains elusive.The CRISPR-Cas system is the defense machinery found in a range of bacterial and archaea species (href="#bib33" rid="bib33" class=" bibr popnode">Makarova et al., 2015). Among them, the CRISPR-Cas9 system derived from Streptococcus pyogenes is most extensively characterized (href="#bib21" rid="bib21" class=" bibr popnode">Jinek et al., 2012, href="#bib22" rid="bib22" class=" bibr popnode">Jinek et al., 2014, href="#bib38" rid="bib38" class=" bibr popnode">Nishimasu et al., 2014, href="#bib52" rid="bib52" class=" bibr popnode">Sternberg et al., 2014) and has been adapted into versatile genetic tools (href="#bib1" rid="bib1" class=" bibr popnode">Adli, 2018). The key advantage of the CRISPR-Cas9 system is the high consistency and efficiency in generating targeted gene knockouts, which has enabled us and others to carry out genome-scale CRISPR-knockout (KO) screening in mammalian cells (href="#bib27" rid="bib27" class=" bibr popnode">Koike-Yusa et al., 2014, href="#bib48" rid="bib48" class=" bibr popnode">Shalem et al., 2014, href="#bib57" rid="bib57" class=" bibr popnode">Wang et al., 2014). CRISPR-KO screening has shown superior detection sensitivity compared to RNAi screens (href="#bib12" rid="bib12" class=" bibr popnode">Evers et al., 2016), and its resolving power is evident in the unraveling of genetic dependencies in cancer cells (href="#bib18" rid="bib18" class=" bibr popnode">Hart et al., 2015, href="#bib55" rid="bib55" class=" bibr popnode">Tzelepis et al., 2016, href="#bib58" rid="bib58" class=" bibr popnode">Wang et al., 2017).Here we performed CRISPR-KO phenotypic screens to gain more in-depth insight and comprehensive understanding of the maintenance of and exit from naive pluripotency. The unbiased nature of CRISPR-KO screening revealed multiple genes and protein complexes whose functions have not previously been associated with pluripotency maintenance and/or differentiation. In particular, our screen revealed that regulation of Gsk3 activity is a key requirement in initiating differentiation. In addition, regulation of Gsk3 is mediated by Akt/mTOR signaling, subsequently linking nutrient and energy metabolism pathways to the exit from naive pluripotency. Our study therefore represents the most comprehensive account of the factors involved in the regulation of naive pluripotency, providing a key resource for further experimental interrogation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介小鼠胚胎干细胞(mESCs)来自胚泡期的内部细胞团胚,可以无限繁殖,同时保持分化为所有三个胚层的能力。它们不仅充当了基因组操纵和转基因小鼠生产的平台,而且还成为研究自我更新和分化的分子机制的基本模型系统。特别地,支撑多能性维持的机制已成为广泛研究的主题,建立了通过内在和外在因素调节多能性状态的框架。本质上,核心转录因子Pou5f1,Sox2和Nanog与辅助因子Esrrb,Klf2和Tfcp2l1共同作用以巩固多能性身份()。外部而言,白血病抑制因子(LIF)-STAT3信号在维持多能性方面起着关键作用(),Wnt信号在抑制分化方面起着协同作用(),而FGF-MAPK信号对于mESC启动分化至关重要。为了揭示这些基本原理,建立了通过MEK和Gsk3激酶(称为2i)的双重抑制来保留多能性的培养条件()。用2i培养的mESC与植入前的胚胎中的成胚细胞非常相似,具有反映多能性的基础或幼稚状态的转录组和表观基因组特征(,)。随着多能性维持的机制变得越来越清晰,研究重点已转向了解如何退出从多能性和血统规范的起始。为了响应分化提示,mESC必须解析幼稚的多能网络并启动转录事件,从而驱动其从中间状态或形成状态过渡到启动状态()。调节此过程的一个关键因素是Tcf7l1,它是一种转录抑制因子,与Pou5l1和Sox2共定位,从而抵消了它们的转录激活并抑制了内在的多能性程序()。相反,Tcf7l1的缺失导致Nanog的上调,严重延迟了分化的开始()。 Tcf7l1的活性受Wnt信号的调控,因此取决于Gsk3的活性。 Gsk3的抑制导致β-catenin的核易位,与Tcf7l1结合后,β-catenin的抑制活性消失。这是外部信号如何指示核心多能网络解散的一个明显例子。尽管反向和正向遗传方法已成功地识别了这些因素(,,,,href="#bib29" rid="bib29" class=" bibr popnode"> Leeb等,2014 ,href =“#bib44” rid =“ bib44” class =“ bibr popnode”> Pereira et al。,2006 ),与此过程有关的基因和途径的全部功能仍然难以捉摸。CRISPR-Cas系统是一系列细菌和古细菌物种中发现的防御机制(href="#bib33" rid="bib33" class=" bibr popnode"> Makarova等,2015 )。其中,源自化脓链球菌的CRISPR-Cas9系统具有最广泛的特征(href="#bib21" rid="bib21" class=" bibr popnode"> Jinek et al。,2012 ,href =“#bib22” rid =“ bib22” class =“ bibr popnode”> Jinek等人,2014 ,href="#bib38" rid="bib38" class=" bibr popnode">西松et al。,2014 ,href="#bib52" rid="bib52" class=" bibr popnode"> Sternberg et al。,2014 ),并已被改编为多种遗传工具( href="#bib1" rid="bib1" class=" bibr popnode"> Adli,2018年)。 CRISPR-Cas9系统的主要优势是产生靶向基因敲除的高度一致性和效率,这使我们和其他人能够在哺乳动物细胞中进行基因组规模的CRISPR敲除(KO)筛选(href =“# bib27“ rid =” bib27“ class =” bibr popnode“> Koike-Yusa等人,2014 ,href="#bib48" rid="bib48" class=" bibr popnode"> Shalem等人。,2014 ,href="#bib57" rid="bib57" class=" bibr popnode"> Wang等人,2014 )。相对于RNAi筛选(href="#bib12" rid="bib12" class=" bibr popnode"> Evers et al。,2016 ),CRISPR-KO筛选显示出了更高的检测灵敏度。在揭示癌细胞的遗传依赖性方面很明显(href="#bib18" rid="bib18" class=" bibr popnode"> Hart等人,2015 ,href =“#bib55 “ rid =” bib55“ class =” bibr popnode“> Tzelepis等,2016 ,href="#bib58" rid="bib58" class=" bibr popnode"> Wang等。,2017 )。在这里,我们进行了CRISPR-KO表型筛选,以更深入地了解和全面了解天真多能性的维持和退出。 CRISPR-KO筛选的公正特性揭示了多个基因和蛋白质复合物,其功能以前与多能性维持和/或分化无关。特别是,我们的屏幕显示,调节Gsk3活性是启动分化的关键要求。此外,Gsk3的调节是由Akt / mTOR信号传导介导的,随后将营养和能量代谢途径与幼稚多能性的退出联系起来。因此,我们的研究代表了对天真多能性调节所涉及的因素的最全面的解释,为进一步的实验审讯提供了关键资源。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号