class='head no_bottom_margin' id='sec1title'>Int'/> Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures
【2h】

Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures

机译:DNA双链断裂密码子修复途径染色质特征的组蛋白修饰的全面定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDNA double-strand breaks (DSBs) are extremely detrimental since they can lead to mutations and chromosomal rearrangements. DSBs arise from various environmental stresses and upon developmentally scheduled activation of endonucleases, but they can also arise physiologically during replication and transcription. Anomalies in the DSB repair apparatus are responsible for premature aging and neurodegenerative syndromes and are strongly implicated in cancer onset and progression.DSBs are mainly repaired by two partially redundant, yet profoundly different, pathways: homologous recombination (HR) and non-homologous end joining (NHEJ) (for review, see ). HR uses an intact copy of the damaged locus as a template and involves many factors for DSB detection, 5′ end resection, homology search, strand invasion, and resolution. In contrast, NHEJ repair machineries require no or limited resection and can join the two broken ends with no or minimal homology. Inaccuracy, failure, or misuse of each of these pathways can trigger very different consequences on the genome. DSB repair pathway choice can be influenced by cell cycle phase (), DNA end complexity (), and the type of damaged locus (, ).In eukaryotes, DSB repair occurs in the context of chromatin. Chromatin is a highly dynamic structure, affected by histone post-translational modifications, DNA methylation, or incorporation of histone variants (for review, see , ). Chromatin modifications can alter the stability of the histone octamer onto DNA but also be specifically recognized by “reader” modules found in chromosomal proteins as well as subunits of DNA transaction machineries. All together, nucleosome modifications regulate DNA accessibility; the stiffness, flexibility, and mobility of chromatin within the nucleus; and the recruitment of molecular machines ensuring transcription, replication, and repair.Key aspects in the interplay between DSB repair and chromatin environment have already emerged (). H2AX is rapidly phosphorylated by ATM (and named γH2AX) over several megabases surrounding the break (, , , ). In parallel, histone acetyltransferases and deacetylases tightly control acetylation levels of several residues of H3, H4, and H2A (, , , href="#bib62" rid="bib62" class=" bibr popnode">Lee et al., 2010, href="#bib72" rid="bib72" class=" bibr popnode">Miller et al., 2010, href="#bib81" rid="bib81" class=" bibr popnode">Ogiwara et al., 2011, href="#bib115" rid="bib115" class=" bibr popnode">Toiber et al., 2013) to regulate chromatin relaxation near DSBs. Acetylated histones also participate in the recruitment of nucleosome remodeling factors, enhancing DSB accessibility and facilitating resection (href="#bib8" rid="bib8" class=" bibr popnode">Bennett and Peterson, 2015, href="#bib62" rid="bib62" class=" bibr popnode">Lee et al., 2010, href="#bib115" rid="bib115" class=" bibr popnode">Toiber et al., 2013). Similarly, histone methyltransferases and demethylases can regulate recruitment and/or stabilization of repair proteins (CtIP, 53BP1, BRCA1 …) (href="#mmc1" rid="mmc1" class=" supplementary-material">Table S2). Moreover, ubiquitination and sumoylation pathways contribute to DSB-induced chromatin reorganization (for review, see href="#bib97" rid="bib97" class=" bibr popnode">Schwertman et al., 2016). All together, these specific chromatin modifications generate a chromatin state permissive for repair but also directly contribute to the recruitment of DSB repair machineries, repair pathway choice, and the activation of the DNA damage checkpoint.Yet the definite map of DSB-induced chromatin modifications and their respective involvement in DSB repair remain largely unknown. Furthermore, NHEJ and HR repair pathways conceivably require very different chromatin settings. Since chromatin structure plays a central role in DNA accessibility and flexibility, an in-depth characterization of the chromatin that assembles at DSBs represents a critical step in understanding how DSB repair machineries operate in the whole nucleus to restore the original DNA sequence and avoid deleterious genome rearrangements.Here, using high-throughput genomic approaches in a standardized system in which multiple DSBs are induced at defined positions across the human genome, we report the first comprehensive picture of the chromatin landscape induced around DSBs and its relationship with individual repair pathways.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 DNA双链断裂(DSB)非常有害,因为它们可能导致突变和染色体重排。 DSB是由各种环境压力和核酸内切酶的发展计划激活引起的,但它们也可以在复制和转录过程中以生理方式出现。 DSB修复仪的异常导致过早衰老和神经退行性综合征,并与癌症的发生和发展密切相关.DSB主要通过两种部分冗余但极为不同的途径修复:同源重组(HR)和非同源末端连接(NHEJ)(有关审查,请参阅)。 HR使用受损基因座的完整副本作为模板,并涉及许多因素用于DSB检测,5'末端切除,同源性搜索,链入侵和分离。相比之下,NHEJ维修机械不需要或仅需有限的切除,并且可以在没有或只有极少同源性的情况下将两个折断的末端连接在一起。这些途径中的每一个的不准确,失败或滥用都可能对基因组产生非常不同的后果。 DSB修复途径的选择可能受到细胞周期阶段(),DNA末端复杂性()和受损基因座类型()的影响。在真核生物中,DSB修复发生在染色质的背景下。染色质是一种高度动态的结构,受组蛋白翻译后修饰,DNA甲基化或组蛋白变体掺入的影响(有关综述,请参见)。染色质修饰可以改变组蛋白八聚体在DNA上的稳定性,但是也可以被染色体蛋白以及DNA交易机制的亚基中的“阅读器”模块特异性识别。总之,核小体修饰调节DNA的可及性。染色质在细胞核内的硬度,柔韧性和流动性; DSB修复和染色质环境之间相互作用的关键方面已经出现()。 H2AX被ATM迅速磷酸化(并称为γH2AX),围绕断裂点(,,,)形成了数兆碱基。同时,组蛋白乙酰基转移酶和脱乙酰基酶严格控制H3,H4和H2A的几个残基的乙酰化水平(,,,,href="#bib62" rid="bib62" class=" bibr popnode"> Lee等, 2010 ,href="#bib72" rid="bib72" class=" bibr popnode">米勒等人,2010 ,href =“#bib81” rid =“ bib81” class =“ bibr popnode”> Ogiwara等,2011 ,href="#bib115" rid="bib115" class=" bibr popnode"> Toiber等,2013 )调节DSB附近的染色质松弛。乙酰化的组蛋白还参与了核小体重塑因子的募集,增强了DSB的可及性并促进了切除(href="#bib8" rid="bib8" class=" bibr popnode"> Bennett和Peterson,2015 ,< a href =“#bib62” rid =“ bib62” class =“ bibr popnode”>李等人,2010 ,href="#bib115" rid="bib115" class=" bibr popnode"> Toiber等人,2013 )。同样,组蛋白甲基转移酶和脱甲基酶可以调节修复蛋白(CtIP,53BP1,BRCA1…)的募集和/或稳定(href="#mmc1" rid="mmc1" class="Supplementary-material">表S2 )。此外,泛素化和SUMO化途径有助于DSB诱导的染色质重组(有关综述,请参见href="#bib97" rid="bib97" class=" bibr popnode"> Schwertman et al。,2016 )。总而言之,这些特定的染色质修饰会产生允许修复的染色质状态,但也直接有助于DSB修复机制的募集,修复途径的选择以及DNA损伤检查点的激活。他们各自在DSB维修中的参与仍然未知。此外,可以想象,NHEJ和HR修复途径需要非常不同的染色质设置。由于染色质结构在DNA的可及性和灵活性中起着核心作用,因此在DSB上组装的染色质的深入表征是理解DSB修复机制如何在整个细胞核中运作以恢复原始DNA序列并避免有害基因组的关键步骤在这里,我们使用标准化系统中的高通量基因组方法,在整个人类基因组的定义位置诱导了多个DSB,我们报道了DSB周围诱导的染色质景观的第一张综合图及其与单个修复途径的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号