首页> 美国卫生研究院文献>Elsevier Sponsored Documents >A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival
【2h】

A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival

机译:短串联重复富集RNA组装一个核室以控制替代剪接和促进细胞存活。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionFunctions of many lncRNAs, >200-nt-long transcripts lacking functional open reading frames (ORFs), depend on recruitment of multiple copies of specific RNA-binding proteins (RBPs) to repeated cis-elements (, ). For example, a decoy long noncoding RNA (lncRNA) called NORAD contains at least 17 binding sites for the RBP Pumilio (, ). Another lncRNA, Firre, may control nuclear architecture through repeat-mediated interaction with the nuclear matrix protein hnRNP U ().Several lncRNAs function as scaffolds facilitating biogenesis of non-membrane-bound cellular compartments (, , ). A classic example is the ribosome-producing organelle nucleolus that requires transcription of the 47S/45S rRNA precursors (pre-rRNA) by the RNA polymerase I for its assembly (). Other structural lncRNAs include NEAT1/MEN-epsilon/beta nucleating paraspeckles, stress-induced Sat-III transcripts involved in nuclear stress body assembly and Hsr-omega RNAs is required to form omega speckles (, , ). Interestingly, the Sat-III and the Hsr-omega RNAs contain 160- to 280-nt-long tandem repeats that may engage in multivalent interactions with corresponding RBPs (, ).Perhaps the most compelling example of multivalent recruitment of RBPs to RNA is provided by aberrant transcripts expressed in the context of neurodegenerative and neuromuscular disorders and containing genetically expanded short tandem repeats (STRs), head-to-tail concatemers of 2- to 12-nt sequence units (, href="#bib48" rid="bib48" class=" bibr popnode">Morriss and Cooper, 2017). For instance, pre-mRNAs containing expanded (CUG)n and (CCUG)n sequences contribute to pathogenesis of myotonic dystrophy by sequestering the RBP Muscleblind (MBNL1) in nuclear foci and inhibiting its splicing regulation function (href="#bib22" rid="bib22" class=" bibr popnode">Goodwin and Swanson, 2014, href="#bib48" rid="bib48" class=" bibr popnode">Morriss and Cooper, 2017).STRs occupy >3% of the reference human genome (href="#bib19" rid="bib19" class=" bibr popnode">Ellegren, 2004). However, with a notable exception of the subtelomeric repeat-containing lncRNA TERRA, the overall expression status of endogenously encoded STRs and possible biological functions of the corresponding transcripts remain poorly understood (href="#bib2" rid="bib2" class=" bibr popnode">Azzalin and Lingner, 2015, href="#bib6" rid="bib6" class=" bibr popnode">Biscotti et al., 2015). Moreover, it is likely that STR-containing RNAs are underrepresented in the existing transcriptome annotations because of the inherent difficulty in distinguishing such sequences from their close homologs, especially in the context of RNA sequencing (RNA-seq) experiments.LncRNAs and RBPs are frequently deregulated in cancer (href="#bib52" rid="bib52" class=" bibr popnode">Pereira et al., 2017, href="#bib62" rid="bib62" class=" bibr popnode">Schmitt and Chang, 2016). For example, polypyrimidine tract-binding protein (PTBP1/PTB/hnRNP I), an RBP regulating pre-mRNA processing in the nucleus and mRNA translation in the cytoplasm (href="#bib34" rid="bib34" class=" bibr popnode">Kafasla et al., 2012, href="#bib36" rid="bib36" class=" bibr popnode">Keppetipola et al., 2012), is upregulated in several types of cancer (href="#bib12" rid="bib12" class=" bibr popnode">Cheung et al., 2009, href="#bib28" rid="bib28" class=" bibr popnode">He et al., 2014, href="#bib69" rid="bib69" class=" bibr popnode">Wang et al., 2017). This has been linked with increased proliferation and invasiveness of cancer cells, as well as their ability to carry out aerobic glycolysis and evade apoptosis induced by extrinsic cues (href="#bib12" rid="bib12" class=" bibr popnode">Cheung et al., 2009, href="#bib14" rid="bib14" class=" bibr popnode">Cobbold et al., 2010, href="#bib16" rid="bib16" class=" bibr popnode">David et al., 2010, href="#bib31" rid="bib31" class=" bibr popnode">Izquierdo et al., 2005, href="#bib69" rid="bib69" class=" bibr popnode">Wang et al., 2017). PTBP1 is also a natural repressor of differentiation-specific alternative splicing events (href="#bib7" rid="bib7" class=" bibr popnode">Boutz et al., 2007, href="#bib34" rid="bib34" class=" bibr popnode">Kafasla et al., 2012, href="#bib36" rid="bib36" class=" bibr popnode">Keppetipola et al., 2012, href="#bib45" rid="bib45" class=" bibr popnode">Makeyev et al., 2007, href="#bib63" rid="bib63" class=" bibr popnode">Spellman et al., 2007, href="#bib72" rid="bib72" class=" bibr popnode">Yap et al., 2012), providing another possible explanation for its increased expression in cancer cells.However, upregulation of PTBP1 is insufficient to trigger cellular transformation on its own (href="#bib67" rid="bib67" class=" bibr popnode">Wang et al., 2008a). Possibly explaining this paradox, PTBP1 has been shown to stimulate expression of several activators of apoptosis by either altering splicing of their pre-mRNAs or increasing their translation efficiency (href="#bib5" rid="bib5" class=" bibr popnode">Bielli et al., 2014, href="#bib10" rid="bib10" class=" bibr popnode">Bushell et al., 2006, href="#bib74" rid="bib74" class=" bibr popnode">Zhang et al., 2009). How these pro-apoptotic activities are managed in transformed cells overexpressing PTBP1 is an open question. In many cancer cells, a fraction of PTBP1 is recruited to a nuclear body called perinucleolar compartment (PNC) (href="#bib21" rid="bib21" class=" bibr popnode">Ghetti et al., 1992, href="#bib46" rid="bib46" class=" bibr popnode">Matera et al., 1995, href="#bib50" rid="bib50" class=" bibr popnode">Norton and Huang, 2013), but the functional significance of this effect and the mechanisms directing PTBP1 to the PNC remain unclear.Here, we used a combination of bioinformatics and experimental approaches to uncover a number of previously unknown STR-enriched lncRNAs predicted to recruit multiple copies of cognate RBPs. An in-depth analysis of one such lncRNA reveals its critical roles in PNC assembly, regulation of PTBP1 activity, and cell survival.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介许多lncRNA的功能,> 200 nt长的转录本缺乏功能性开放阅读框( ORF),取决于将特定拷贝的RNA结合蛋白(RBP)的多个拷贝募集到重复的顺式元件(,)。例如,称为NORAD的诱饵长非编码RNA(lncRNA)包含至少17个RBP Pumilio(,)结合位点。另一个lncRNA Firre可以通过与核基质蛋白hnRNP U()重复介导的相互作用来控制核结构。数个lncRNA充当支架,促进非膜结合细胞区室的生物发生。一个典型的例子是产生核糖体的细胞器核仁,需要RNA聚合酶I对其47S / 45S rRNA前体(pre-rRNA)进行转录以进行组装。其他结构性lncRNAs包括NEAT1 / MEN-epsilon /β成核副斑点,参与核应激体组装的应激诱导的Sat-III转录本,以及形成Omega斑点需要Hsr-omega RNA。有趣的是,Sat-III和Hsr-omega RNA包含160至280nt长的串联重复序列,可能与相应的RBP进行多价相互作用(,)。也许提供了最有说服力的RBP多价募集到RNA的例子由在神经退行性疾病和神经肌肉疾病中表达的异常转录本组成,并包含基因扩增的短串联重复序列(STR),2至12 nt序列单元的头尾衔接物(,href =“#bib48” rid = “ bib48” class =“ bibr popnode”> Morriss和Cooper,2017年)。例如,包含扩展的(CUG)n和(CCUG)n序列的前mRNA通过在核灶中隔离RBP肌肉盲(MBNL1)并抑制其剪接调节功能来促进强直性肌营养不良的发病机理(href =“#bib22” rid =“ bib22” class =“ bibr popnode”>古德温和斯旺森,2014 ,href="#bib48" rid="bib48" class=" bibr popnode">莫里斯和库珀,2017 )。STR占据了人类参考基因组的3%以上(href="#bib19" rid="bib19" class=" bibr popnode"> Ellegren,2004 )。但是,除了含有亚端粒重复序列的lncRNA TERRA的显着例外,内源编码的STR的整体表达状态和相应转录本的可能生物学功能仍然知之甚少(href =“#bib2” rid =“ bib2” class = “ bibr popnode”> Azzalin和Lingner,2015 ,href="#bib6" rid="bib6" class=" bibr popnode"> Biscotti等人,2015 )。此外,在现有的转录组注释中,含STR的RNAs可能代表不足,因为很难将此类序列与其近端同源物区分开来,特别是在RNA测序(RNA-seq)实验的情况下.LncRNA和RBP经常出现在癌症中解除管制(href="#bib52" rid="bib52" class=" bibr popnode">佩雷拉等人,2017 ,href =“#bib62” rid =“ bib62” class = “ bibr popnode“> Schmitt和Chang,2016 )。例如,聚嘧啶束结合蛋白(PTBP1 / PTB / hnRNP I),RBP调节细胞核中的前mRNA加工和细胞质中的mRNA翻译(href =“#bib34” rid =“ bib34” class =“ bibr popnode“> Kafasla等,2012 ,href="#bib36" rid="bib36" class=" bibr popnode"> Keppetipola等,2012 ),几种类型的癌症(href="#bib12" rid="bib12" class=" bibr popnode"> Cheung等人,2009 ,href =“#bib28” rid =“ bib28”类=“ bibr popnode”>他等人,2014 ,href="#bib69" rid="bib69" class=" bibr popnode"> Wang等人,2017 )。这与癌细胞的增殖和侵袭性增加有关,以及它们进行有氧糖酵解和逃避由外在线索诱导的凋亡的能力(href =“#bib12” rid =“ bib12” class =“ bibr popnode” > Cheung et al。,2009 ,href="#bib14" rid="bib14" class=" bibr popnode"> Cobbold et al。,2010 ,href =“#bib16 “ rid =” bib16“ class =” bibr popnode“>大卫等人,2010 ,href="#bib31" rid="bib31" class=" bibr popnode">伊斯基尔多等人,2005 ,href="#bib69" rid="bib69" class=" bibr popnode"> Wang等人,2017 )。 PTBP1还是抑制分化的选择性剪接事件的天然抑制剂(href="#bib7" rid="bib7" class=" bibr popnode"> Boutz et al。,2007 ,href =“ #bib34“ rid =” bib34“ class =” bibr popnode“> Kafasla等人,2012 ,href="#bib36" rid="bib36" class=" bibr popnode"> Keppetipola等人。 ,2012 ,href="#bib45" rid="bib45" class=" bibr popnode">马基耶夫等人,2007 ,href =“#bib63” rid =“ bib63 “ class =” bibr popnode“> Spellman等人,2007 ,href="#bib72" rid="bib72" class=" bibr popnode"> Yap等人,2012 ),提供了其在癌细胞中表达增加的另一种可能的解释。但是,PTBP1的上调不足以单独触发细胞转化(href="#bib67" rid="bib67" class=" bibr popnode"> Wang等人,2008a )。可能解释了这一悖论,已显示PTBP1可以通过改变其前mRNA的剪接或提高其翻译效率来刺激几种凋亡激活剂的表达(href =“#bib5” rid =“ bib5” class =“ bibr popnode “> Bielli等人,2014 ,href="#bib10" rid="bib10" class=" bibr popnode"> Bushell等人,2006 ,href =”# bib74“ rid =” bib74“ class =” bibr popnode“> Zhang等人,2009 )。如何在过表达PTBP1的转化细胞中管理这些促凋亡活性是一个悬而未决的问题。在许多癌细胞中,一部分PTBP1被募集到称为核仁室(PNC)的核体内(href="#bib21" rid="bib21" class=" bibr popnode"> Ghetti等,1992 ,href="#bib46" rid="bib46" class=" bibr popnode">马特拉(Matera)等人,1995 ,href =“#bib50” rid =“ bib50” class =“ bibr popnode“> Norton和Huang,2013 ),但这种作用的功能意义以及将PTBP1导向PNC的机制仍不清楚。在此,我们结合了生物信息学和实验方法来发现许多以前未知的富含STR的lncRNA预计募集多个拷贝的同源RBP。对一种此类lncRNA的深入分析揭示了其在PNC组装,PTBP1活性调节和细胞存活中的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号