class='head no_bottom_margin' id='sec1title'>Int'/> Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP
【2h】

Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP

机译:Caveolin-1通过肌动蛋白依赖性的YAP调节对基质刚度的机械传导响应。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe integral membrane protein Caveolin-1 (CAV1) engages in crosstalk with the actin cytoskeleton and connects directly to actin cables through the protein FLNA (, ). CAV1 controls focal adhesion stability, actin organization, and actomyosin contraction through RHO GTPases (, , ) and contributes to mechanosensing and adaptation in response to various mechanical stimuli, such as membrane stretching, shear stress, hypoosmotic shock, and cell detachment (, , ). However, current understanding remains limited regarding the mechanisms by which these phenomena are integrated with overall cell function.The transcriptional cofactor yes-associated protein (YAP) operates downstream of the canonical Hippo pathway (), a highly conserved pathway regulating organ growth control, tissue homeostasis, and tumorigenesis (). YAP regulates the transcription of specific gene sets mainly through its interaction with TEA domain (TEAD) transcription factors (). A cascade of kinases, including LATS1 and LATS2, lead to YAP phosphorylation and curb its nucleocytoplasmic shuttling, mediating its cytosolic retention through interaction with 14-3-3 proteins, thus downregulating YAP transcriptional output (, , ). This regulatory network is controlled by upstream cues related to tissue architecture and cellular context, such as cell-cell adhesion, cell density, and cell polarity (). YAP is also controlled by mechanical signals, such as extracellular matrix (ECM) stiffness, shear stress, and stretching (href="#bib11" rid="bib11" class=" bibr popnode">Codelia et al., 2014, href="#bib18" rid="bib18" class=" bibr popnode">Dupont et al., 2011, href="#bib68" rid="bib68" class=" bibr popnode">Zhong et al., 2013). Stiff environments favor YAP nuclear localization (i.e., activation), whereas attachment to soft substrates increases cytoplasmic retention. This mechanical control, which determines cell proliferation and differentiation (href="#bib18" rid="bib18" class=" bibr popnode">Dupont et al., 2011), depends on RHO GTPase function and actomyosin-driven contractility but is largely independent of kinase regulation, because (1) depletion of LATS1/2 kinases does not alter the mechanical responsiveness of YAP and (2) non-phosphorylatable mutants are nonetheless sensitive to substrate stiffness (href="#bib18" rid="bib18" class=" bibr popnode">Dupont et al., 2011, href="#bib20" rid="bib20" class=" bibr popnode">Elosegui-Artola et al., 2017). The adaptation of nuclear pore units to mechanical tension also contributes to the regulation of YAP nuclear entry (href="#bib20" rid="bib20" class=" bibr popnode">Elosegui-Artola et al., 2017). However, understanding is limited about the exact molecular mechanisms by which ECM stiffness controls YAP activity. Here, we identify CAV1 as an upstream positive regulator of YAP that affects the response to changes in ECM stiffness through a mechanism dependent on F-actin dynamics.The mechanical regulation of YAP underpins pathophysiological processes such as cardiovascular disease, inflammation and tissue regeneration, and cancer (href="#bib50" rid="bib50" class=" bibr popnode">Panciera et al., 2017). YAP activation by ECM stiffness promotes cancer-associated fibroblast activation and subsequent peritumoral ECM remodeling and stiffening, establishing a positive-feedback loop that favors cancer progression (href="#bib7" rid="bib7" class=" bibr popnode">Calvo et al., 2013). Here, we show that overexpression of constitutively active YAP mutants rescues the blunted contractility and ECM remodeling previously reported for Cav1 genetic deficiency (href="#bib24" rid="bib24" class=" bibr popnode">Goetz et al., 2011). The positive impact of YAP activity on tumor initiation and progression is further showcased by its critical contribution to pancreatitis-induced acinar-to-ductal metaplasia (ADM), which favors pancreatic ductal carcinoma (PDAC) initiation (href="#bib27" rid="bib27" class=" bibr popnode">Gruber et al., 2016). We further demonstrate CAV1-dependent positive regulation of YAP in vivo, showing that Cav1-knockout (Cav1KO) pancreatic parenchyma fails to upregulate YAP in response to induced pancreatitis and exhibits blunting of changes associated with YAP activation, such as ADM.Our results provide important insight into the mechanisms regulating YAP function. We identify CAV1 as an upstream regulator of YAP, controlling its transcriptional activity through the control of actin cytoskeleton dynamics. Conversely, YAP underpins an important share of CAV1-dependent phenotypes. We propose this CAV1-YAP regulation has important implications in the progression of some pathologies, such as cancer, and will allow us to better understand the principles governing processes driven by substrate stiffness in health and disease.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介整合膜蛋白Caveolin-1(CAV1)与肌动蛋白细胞骨架发生串扰,并且通过蛋白FLNA(,)直接连接到肌动蛋白电缆。 CAV1通过RHO GTPases(``,'')控制粘着斑的稳定性,肌动蛋白组织和肌动球蛋白收缩,并响应各种机械刺激(例如膜拉伸,剪切应力,低渗性休克和细胞脱离),促进机械传感和适应。 。然而,目前对这些现象与整体细胞功能整合的机制的了解仍然有限。转录辅因子是相关蛋白(YAP)在规范的Hippo途径()的下游保守,该途径是高度保守的调节器官生长控制的途径,组织稳态和肿瘤发生()。 YAP主要通过与TEA域(TEAD)转录因子的相互作用来调节特定基因集的转录。一连串的激酶(包括LATS1和LATS2)导致YAP磷酸化并抑制其核质穿梭,通过与14-3-3蛋白相互作用介导其胞质保留,从而下调YAP转录输出(“”)。该调节网络由与组织结构和细胞环境有关的上游线索控制,例如细胞间粘附,细胞密度和细胞极性()。 YAP还受到机械信号的控制,例如细胞外基质(ECM)的刚度,剪切应力和拉伸(href="#bib11" rid="bib11" class=" bibr popnode"> Codelia et al。,2014 < / a>,href="#bib18" rid="bib18" class=" bibr popnode">杜邦等人,2011 ,href =“#bib68” rid =“ bib68” class = “ bibr popnode”> Zhong等人,2013 )。僵硬的环境有利于YAP核定位(即激活),而附着在软质基质上会增加细胞质的保留。这种决定细胞增殖和分化的机械控制(href="#bib18" rid="bib18" class=" bibr popnode"> Dupont等,2011 )取决于RHO GTPase功能和放线菌素。驱动的收缩力,但很大程度上不受激酶调节的影响,因为(1)耗竭LATS1 / 2激酶不会改变YAP的机械响应性,并且(2)不可磷酸化的突变体仍然对底物刚度敏感(href =“# bib18“ rid =” bib18“ class =” bibr popnode“>杜邦等人,2011 ,href="#bib20" rid="bib20" class=" bibr popnode"> Elosegui-Artola等。,2017 )。核孔单元对机械张力的适应性也有助于调节YAP核进入(href="#bib20" rid="bib20" class=" bibr popnode"> Elosegui-Artola et al。,2017 )。但是,对ECM刚度控制YAP活性的确切分子机制的了解有限。在这里,我们确定CAV1是YAP的上游正调节剂,它通过依赖于F-肌动蛋白动力学的机制影响ECM刚度变化的响应.YAP的机械调节支持诸如心血管疾病,炎症和组织再生等病理生理过程,以及癌症(href="#bib50" rid="bib50" class=" bibr popnode"> Panciera等人,2017 )。通过ECM刚度激活YAP可促进癌症相关的成纤维细胞激活以及随后的肿瘤周围ECM重塑和硬化,从而建立有利于癌症进展的正反馈回路(href="#bib7" rid="bib7" class=" bibr popnode"> Calvo等人,2013 )。在这里,我们证明了组成型活性YAP突变体的过表达可以挽救先前针对Cav1基因缺陷报道的钝性收缩和ECM重塑(href="#bib24" rid="bib24" class=" bibr popnode"> Goetz等, 2011 )。 YAP活性对胰腺炎诱导的腺泡-导管化生(ADM)的关键作用进一步证明了其对肿瘤的发生和发展的积极影响,后者促进胰腺导管癌(PDAC)的发生(href =“#bib27” rid =“ bib27” class =“ bibr popnode”> Gruber等人,2016 )。我们进一步证明了CAV1依赖的YAP在体内的正向调节,表明Cav1基因敲除(Cav1KO)胰腺实质不能上调YAP对诱导性胰腺炎的反应,并且表现出与YAP激活相关的变化(如ADM)变钝。我们的结果提供了重要的信息了解调节YAP功能的机制。我们确定CAV1为YAP的上游调节剂,通过控制肌动蛋白细胞骨架动力学来控制其转录活性。反过来,YAP支撑着依赖CAV1的表型的重要份额。我们建议,这种CAV1-YAP调节对某些病理过程(例如癌症)的发展具有重要意义,并将使我们能够更好地理解在健康和疾病中由底物僵硬度驱动的调控过程的原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号