首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Extensive Unexplored Human Microbiome Diversity Revealed by Over 150000 Genomes from Metagenomes Spanning Age Geography and Lifestyle
【2h】

Extensive Unexplored Human Microbiome Diversity Revealed by Over 150000 Genomes from Metagenomes Spanning Age Geography and Lifestyle

机译:来自年龄地理和生活方式的超基因组的超过150000个基因组揭示了广泛的未探索的人类微生物组多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDespite extensive recent studies of the human microbiome using a variety of culture-independent molecular technologies (, , , ), most characterization of these ecosystems is still focused on microbes that are easily cultivable, particularly when those with sequenced isolate genomes are considered. Since physiological characterization of diverse, uncharacterized human-associated microbes by cultivation can be difficult in high throughput (), additional approaches are needed that scale with the extent of populations that can now be surveyed using metagenomic sequencing. Culture-independent genomic approaches that are scalable to large cohorts (, , ) have facilitated access to an expanded set of isolation-recalcitrant members of the microbiome, but they also suggested the presence of a large fraction of still unexplored diversity (, ).Here, we present a set of 154,723 microbial genomes that are often prevalent, population specific, and/or geographically specific that we reconstructed via single-sample assembly from a total of 9,428 global, body-wide metagenomes. Other studies have also succeeded in reconstructing microbial genomes by metagenomic assembly on single human cohorts (, , , , , href="#bib72" rid="bib72" class=" bibr popnode">Sharon et al., 2013), but systematic cross-study cataloging of metagenomically assembled genomes focused so far on non-human environments (href="#bib55" rid="bib55" class=" bibr popnode">Oyama et al., 2017, href="#bib58" rid="bib58" class=" bibr popnode">Parks et al., 2017). Complementary techniques, such as co-abundance of gene groups (href="#bib48" rid="bib48" class=" bibr popnode">Nielsen et al., 2014), can identify genomic bins without reference, but these techniques do not account for sample-specific strains and strain-level differences in the sequence reconstruction and thus require downstream single-nucleotide variation analysis on specific genomic regions to uncover strain variability (href="#bib64" rid="bib64" class=" bibr popnode">Quince et al., 2017b, href="#bib80" rid="bib80" class=" bibr popnode">Truong et al., 2017).Using large-scale single-sample metagenomic assembly supported by strict quality control (including filtering based on nucleotide polymorphisms), we identified 3,796 species-level clades (comprising 34,205 genomes) without previous whole-genome information. This identified several taxa prevalent but previously unobserved even in well-profiled populations (e.g., a genus-level Ruminococcaceae clade phylogenetically close to Faecalibacterium), extensive taxonomically uncharacterized species associated with non-Western populations, and the presence of several taxa from undersampled phyla (e.g., Saccharibacteria and Elusimicrobia) in oral and gut microbiomes. The resulting genome set can thus serve as the basis for future strain-specific comparative genomics to associate variants in the human microbiome with environmental exposures and health outcomes across the globe.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介尽管最近对人类微生物组进行了广泛的研究,但使用了多种与文化无关的分子技术( ,,),这些生态系统的大多数特征仍然集中在易于培养的微生物上,特别是在考虑具有序列分离基因组的微生物时。由于在高通量下很难通过培养对多种未表征的人类相关微生物进行生理表征(),因此需要其他方法来根据现在可以使用宏基因组测序进行调查的种群规模进行缩放。与文化无关的基因组学方法可扩展至大型研究组(``,''),促进了对微生物组中一类分离顽固成员的扩展访问,但他们也建议存在很大一部分尚未开发的多样性(``)。 ,我们介绍了一组154,723个微生物基因组,这些基因组通常是普遍的,特定于群体的和/或地理位置特定的,我们是通过单样本组装从总共9,428个全球,整个人体的基因组中重建的。其他研究也已经通过在单个人类队列中进行宏基因组学组装成功地重建了微生物基因组(、、、、、、 href="#bib72" rid="bib72" class=" bibr popnode"> Sharon等,2013 ),但到目前为止,针对宏基因组学组装的基因组的系统交叉研究分类主要针对非人类环境(href="#bib55" rid="bib55" class=" bibr popnode"> Oyama等人,2017,< / a>,href="#bib58" rid="bib58" class=" bibr popnode"> Parks et al。,2017 )。互补技术,例如基因组的共同丰度(href="#bib48" rid="bib48" class=" bibr popnode"> Nielsen et al。,2014 ),可以识别基因组区域而无需参考,但是这些技术并未考虑样品特异性菌株和序列重建中菌株水平的差异,因此需要对特定基因组区域进行下游单核苷酸变异分析以揭示菌株变异性(href =“#bib64” rid =“ bib64“ class =” bibr popnode“> Quince等人,2017b ,href="#bib80" rid="bib80" class=" bibr popnode"> Truong等人,2017 使用严格的质量控制(包括基于核苷酸多态性的过滤)支持的大规模单样本宏基因组学组装,我们确定了3796个物种级别进化枝(包含34205个基因组),而没有以前的全基因组信息。这可以识别出几种普遍存在的分类单元,甚至在轮廓分明的种群中也未观察到(例如,属系水平的Ruminococcaceae进化枝在系统上接近Faecalibacterium的物种),与非西方种群相关的广泛的分类学上没有特征的物种,以及从采样不足的种群中存在的几种分类单元(口腔和肠道微生物群中的糖菌和Elusimicrobia)。因此,所得的基因组集可作为未来菌株特异性比较基因组学的基础,以将人类微生物组中的变体与全球环境暴露和健康状况相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号